首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   33篇
  国内免费   2篇
电工技术   13篇
综合类   1篇
化学工业   104篇
金属工艺   10篇
机械仪表   16篇
建筑科学   17篇
能源动力   39篇
轻工业   53篇
水利工程   2篇
石油天然气   4篇
无线电   45篇
一般工业技术   50篇
冶金工业   21篇
原子能技术   4篇
自动化技术   75篇
  2024年   2篇
  2023年   2篇
  2022年   12篇
  2021年   24篇
  2020年   17篇
  2019年   26篇
  2018年   41篇
  2017年   31篇
  2016年   22篇
  2015年   18篇
  2014年   19篇
  2013年   32篇
  2012年   28篇
  2011年   32篇
  2010年   12篇
  2009年   17篇
  2008年   11篇
  2007年   18篇
  2006年   10篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2001年   4篇
  2000年   2篇
  1999年   8篇
  1998年   8篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1972年   1篇
排序方式: 共有454条查询结果,搜索用时 0 毫秒
1.
In Mobile Ad hoc Network (MANET), mobility, traffic and node density are main network conditions that significantly affect performance of routing protocols. Much of the previous research in MANET routing have focused on developing strategies, which suit one specific networking scenario. Therefore, there is no existing protocol that can work well in all different networking scenarios. This paper reviews characteristics of several different classes of routing protocols. Moreover, most of current routing protocols assume homogeneous networking conditions where all nodes have the same capabilities and resources. This paper presents extensive studies simulations for DSR, AODV, LAR1, FSR and WRP in homogenous and heterogeneous networks that consist of different nodes with different resources. The results showed that while all protocols perform reasonably well in homogenous networking conditions, their performance suffer significantly over heterogonous networks.  相似文献   
2.
A simple, template-free and scalable modified sol-gel route was developed for the synthesis of mesoporous flake-like magnesium aluminate spinel (MgAl2O4) at low temperature (700 °C) with high surface area (281 m2 g?1). The obtained spinel materials were characterized by means of physicochemical techniques including X-ray diffraction, thermogravimetric analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption analysis. The propylene oxide was used as gelation and pore forming agent in the sol-gel process. Different morphologies and sizes of flake were generated by the varied synthesis conditions. The result materials reveal that the textural properties of the MgAl2O4 product are strongly associated with the nature and amount of addictive solvent and calcination temperatures. It shows that the BET surface area decrease as the increase of calcination temperature and the optimal temperature of 700 °C result in the pure phase of MgAl2O4 spinel. This synthesis strategy offers a feasible approach for scalable fabrication of mixed metal oxides for various catalytic reactions or catalyst supports due to the large surface area.  相似文献   
3.
The effect of thermal oxidation on the residual stress distribution throughout the thickness of heavily-boron-doped (p+ ) silicon films is studied. The deflection of p+ silicon cantilever beams due to residual stress variation throughout the film thickness is studied for as-diffused and thermally oxidized films. Cantilevers of as-diffused p+ silicon films display a positive curvature (or a negative bending moment), signified by bending up of the beams. Thermal oxidation of the films prior to cantilever fabrication by anisotropic etching modifies the residual stresses in the p+ film, specially in the near-surface region (i.e. the top 0.3 to 0.5 μm for the oxidation times used here), and can result in beams with a negative curvature even when the oxide is removed from the p+ silicon cantilever surface subsequent to cantilever fabrication  相似文献   
4.
One of the challenges in massive-MIMO system is pilot contamination during the channel estimation process. Pilot contamination can cause error or inaccurate channel estimation process for future fifth generation (5G) downlink transmissions. This paper considers using a Wiener-based filter to smooth and predict the channel estimation to reduce the pilot contamination for more accurate CSI during channel estimation. The simulation results show that the Wiener-based smoothing and predicting technique reduces the effect of pilot contamination and increases the accuracy of CSI during channel estimation process. Wiener smoother (WS) is implemented based on Wiener-based filtering technique. The previous estimated CSI and weight coefficient vector are used to smooth the current estimated CSI by using block data formulation to reduce the effect of pilot contamination. However, WS technique suffers from pilot contamination due to pilot training. This motivates the development of two Wiener predictors (WP), known as WP1 and WP2. The WP1 and WP2 run a prediction technique for CSI and number of pilot training during the prediction period, which is missing from the original WS. Comparison results show that the proposed WS and WP outperforms the conventional minimum mean square error and least square, in terms of channel estimation error and per-cell rate. WP2 perform better than WS and WP1 because of the algorithm complexity that required more information to be updated, stored and processed for prediction. Thus, WP2 requires large computation and matrix operation compared to WS and WP1. The results indicate that the channel estimation error due to pilot contamination can be reduced by using the Wiener-based approaches.  相似文献   
5.
This study aimed to determine the chemical composition, antimicrobial and antioxidative activity of Satureja khuzestanica Jamzad essential oil. The oil was analysed by GC and GC/MS. Twenty‐eight constituents were identified. The oxygenated monoterpenes (78.22%) were the principal compound group. Among them, carvacrol (53.86%) and thymol (19.84%) were the most abundant constituents. The oil exhibited an acceptable antimicrobial activity against most of the tested microorganisms. The checkerboard method was applied to determine fractional inhibitory concentration indices (FICIs) to interpret the synergetic, additive, indifference or antagonistic interactions between essential oil and each of antimicrobials (lysozyme, ciprofloxacin, fluconazole and amphotericin B) against food‐related microorganisms. The synergetic phenomenon (FICI ≤ 0.5) was observed in majority of combinations with the exception of the essential oil and lysozyme. The oil exhibited good 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging activity (IC50 = 28.71 μg mL?1). Also, the oil had strong antioxidative activity in β‐carotene‐linoleic acid assay relative antioxidant activity (RAA% = 95.45). This study demonstrated that the essential oil has beneficial biological properties and its simultaneous application with standard antimicrobials against food‐related microorganisms result in reduction in inhibitory doses of the antimicrobials in vitro.  相似文献   
6.
Nowadays, as an emerging technology, additive manufacturing(AM) has received numerous attentions from researchers around the world. The method comprises layer-by-layer manufacturing of products according to the 3D CAD models of the objects. Among other things, AM is capable of producing metal matrix composites(MMCs). Hence, plenty of works in the literature are dedicated to developing different types of MMCs through AM processes. Hence, this paper provides a comprehensive overview on the latest research that has been carried out on the development of the powder-based AM manufactured MMCs from a scientific and technological viewpoint, aimed at highlighting the opportunities and challenges of this innovative manufacturing process. For instance, it is documented that AM is not only able to resolve the reinforcement/matrix bonding issues usually faced with during conventional manufacturing of MMCs, but also it is capable of producing functionally graded composites and geometrically complex objects. Furthermore, it provides the opportunity for a uniform distribution of the reinforcing phase in the metallic matrix and is able to produce composites using refractory metals thanks to the local heat source employed in the method. Despite the aforementioned advantages, there are still some challenges needing more attention from the researchers. Rapid cooling nature of the process, significantly different coe fficient of expansion of the matrix and reinforcement, processability, and the lack of suitable parameters and standards for the production of defect-free AM MMCs seem to be among the most important issues to deal with in future works.  相似文献   
7.
The enzyme 4‐oxalocrotonate tautomerase (4‐OT), which catalyzes enol–keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon–carbon bond‐forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4‐OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000‐fold improvement in catalytic efficiency (kcat/Km) and a >107‐fold change in reaction specificity, by exploring small libraries in which only “hotspots” are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4‐OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site.  相似文献   
8.
9.
The effect of Arabic gum content (5-10% w/w) and walnut-oil concentration (3-6% w/w) on properties of prepared walnut oil/water emulsion, including turbidity loss rate, density, size index, particle size and stability, was investigated using response surface methodology (RSM). For each response, a second-order polynomial model with high coefficient of determination (R2) values ranging from 0.907 to 0.989 was developed using multiple linear regression analysis. The lack of significant difference between the experimental and predicted values proved the adequacy of response surface equations for describing the physical changes of emulsions. An increase of Arabic gum content in range and initial concentration of walnut oil were associated with high emulsion stability and minimum droplet size. It can be concluded that RSM can determine the most suitable formulation (3% w/w walnut oil and 9.62% w/w Arabic gum) to achieve the highest stability in a developed beverage emulsion based on walnut oil.  相似文献   
10.
Silicon-substituted hydroxyapatite (Si-HA) with up to 1.8 wt% Si content was prepared successfully by a hydrothermal method, using Ca(NO3)2, (NH4)3PO4 or (NH4)2HPO4 and Si(OCH2CH3)4 (TEOS) as starting materials. Silicon has been incorporated in hydroxyapatite (HA) lattice by partially replacing phosphate (PO43−) groups with silicate (SiO44−) groups resulting in Si-HA described as Ca10(PO4)6−x(SiO4)x(OH)2−x. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), inductively coupled plasma AES (ICP-AES) and scanning electron microscopy (SEM) techniques reveal that the substitution of phosphate groups by silicate groups causes some OH loss to maintain the charge balance and changes the lattice parameters of HA. The crystal shape of Si-HA has not altered compared to silicon-free reference hydroxyapatite but Si-incorporation reduces the size of Si-HA crystallites. Based on in vitro tests, soaking the specimens in simulated body fluid (SBF), and MTT assays by human osteoblast-like cells, Si-substituted hydroxyapatite is more bioactive than pure hydroxyapatite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号