首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
无线电   2篇
一般工业技术   3篇
  2017年   2篇
  2014年   1篇
  2008年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 133 毫秒
1
1.
Magnetron‐sputtering inert‐gas condensation is an emerging technique offering single‐step, chemical‐free synthesis of nanoparticles with well‐defined morphologies optimized for specific applications. In this study, the authors report a flexible approach to produce Fe nanocubes as building blocks for high‐performance NO2 gas sensor devices, and hybrid FeAu nanocubes with magneto‐plasmonic properties. Considering that nucleation happens within a short distance from the sputtering target, the authors utilize the high‐permeability and resultant screening effect induced by magnetic Fe targets of various thicknesses to manipulate the magnetic field configuration and plasma confinement. The authors thus readily switch from bimodal to single‐Gaussian size distributions of Fe nanocubes by modifying their primordial thermal environments, as explained by a combination of modeling methods. Simultaneously, the authors obtain a material yield increase of more than one order of magnitude compared to experiments using postgrowth mass filtration. The effectiveness of the method is demonstrated by the deposition of Fe nanocubes on microhotplate devices, leading to unprecedented NO2 detection performance for Fe‐based chemoresistive gas sensors. The exceedingly low detection limit down to 3 ppb is attributed to a morphological change in operando from Fe/Fe‐oxide core/shell to specific hollow‐nanocube structures, as revealed by in situ environmental transmission electron microscopy.  相似文献   
2.
Porous films of tantalum (Ta) and its oxides exhibit numerous properties suitable for high surface area applications, mainly in the semiconductor and bio-implant industries. Such films can be developed by Ta nanoparticle deposition using DC magnetron sputtering with gas aggregation. In order to engineer films of desirable properties, accurate control and in-depth understanding of the processes and parameters of nanoparticle growth, deposition and coalescence are crucial. Of utmost importance is to control the film’s porosity, since it determines many of the other physical properties. To this end, we performed a number of classical Molecular Dynamics simulations to study the coalescence of two or more Ta nanoparticles. Temperature, relative size and crystallographic orientation, defect content, degree of crystallinity and deposition rate effects were taken into account, and a mapping of the sintering processes was acquired. A broad range of possible interaction mechanisms were observed, from simple nanoparticle reorientation in order to achieve epitaxial configuration, to atomic adsorption, neck formation, twinning within the nanoparticles and full consolidation into a single, larger nanoparticle. The parameters studied are directly linked to experimental deposition parameters; therefore, fitting them accordingly can lead to growth of films with bespoke properties.  相似文献   
3.
Obtaining accurate structural information on epitaxial films and interfaces is nowhere more critical than in semiconductor passivation layers, where details of the atomic structure and bonding determine the nature of the interface electronic states. Various non-destructive methods have been used to investigate the structure of films and interfaces, but their interpretation is model-dependent, leading occasionally to wrong conclusions. We have developed a new X-ray method for the direct determination of epitaxial structures, coherent Bragg rod analysis (COBRA). The usefulness of our technique is demonstrated by mapping, with atomic precision, the structure of the interfacial region of a Gd2O3 film grown epitaxially on a (100) GaAs substrate. Our findings reveal interesting behaviour not previously suggested by existing structural methods, in particular a lock-in of the in-plane Gd atomic positions to those of the Ga/As atoms of the substrate. Moreover, we find that the bulk stacking of the Gd2O3 atomic layers is abandoned in favour of a new structure that is directly correlated with the stacking sequence of the substrate. These results have important implications for Gd2O3 as an effective passivation layer for GaAs (ref. 7). Our work shows that the COBRA technique, taking advantage of the brilliance of insertion device synchrotron X-ray sources, is widely applicable to epitaxial films and interfaces.  相似文献   
4.
5.
SP1 protein-based nanostructures and arrays   总被引:1,自引:0,他引:1  
Controlled formation of complex nanostructures is one of the main goals of nanoscience and nanotechnology. Stable Protein 1 (SP1) is a boiling-stable ring protein complex, 11 nm in diameter, which self-assembles from 12 identical monomers. SP1 can be utilized to form large ordered arrays; it can be easily modified by genetic engineering to produce various mutants; it is also capable of binding gold nanoparticles (GNPs) and thus forming protein-GNP chains made of alternating SP1s and GNPs. We report the formation and the protocols leading to the formation of those nanostructures and their characterization by transmission electron microscopy, atomic force microscopy, and electrostatic force microscopy. Further control over the GNP interdistances within the protein-GNP chains may lead to the formation of nanowires and structures that may be useful for nanoelectronics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号