首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   13篇
电工技术   6篇
化学工业   40篇
金属工艺   8篇
机械仪表   5篇
能源动力   5篇
轻工业   31篇
水利工程   3篇
无线电   16篇
一般工业技术   41篇
冶金工业   3篇
自动化技术   35篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   10篇
  2019年   9篇
  2018年   19篇
  2017年   11篇
  2016年   10篇
  2015年   13篇
  2014年   12篇
  2013年   13篇
  2012年   15篇
  2011年   13篇
  2010年   8篇
  2009年   10篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
1.
Two-dimensional MoS2 nanoparticles (2D-nps) exhibit artificial enzyme properties that can be regulated at bio-nanointerfaces. We discovered that protein lipase is able to tune the peroxidase-like activity of MoS2 2D-nps, offering low-nanomolar, label-free detection and identification in samples with unknown identity. The inhibition of the peroxidase-like activity of the MoS2 2D-nps was demonstrated to be concentration dependent, and as low as 5 nm lipase was detected with this approach. The results were compared with those obtained with several other proteins that did not display any significant interference with the nanozyme behavior of the MoS2 2D-nps. This unique response of lipase was characterized and exploited for the successful identification of lipase in six unknown samples by using qualitative visual inspection and a quantitative statistical analysis method. The developed methodology in this approach is noteworthy for many aspects; MoS2 2D-nps are neither labeled with a signaling moiety nor modified with any ligands for signal readout. Only the intrinsic nanozyme activity of the MoS2 2D-nps is exploited for this detection approach. No analytical equipment is necessary for the visual detection of lipase. The synthesis of the water-soluble MoS2 2D-nps is low costing and can be performed in bulk scale. Exploring the properties of 2D-nps and their interactions with biological materials reveals highly interesting yet instrumental features that offer the development of novel bioanalytical approaches.  相似文献   
2.
In the context of nonlinear dynamic system identification for Hammerstein systems, Rollins et al. (2003a) studied the information efficiency of the following two competing experimental design approaches: statistical design of experiments (SDOE) and pseudo-random sequences design (PRSD). The focus of this study is the Wiener system and evaluates SDOE against PRS under D-optimal efficiency. Three cases are evaluated and the results strongly support SDOE as the better approach.  相似文献   
3.
Wireless Personal Communications - Scheduling in computing environments such as homogeneous and heterogonous is very challenging and faces various difficulties computationally. This computing needs...  相似文献   
4.
The present article is concerned with the investigation of disturbances in a homogeneous transversely isotropic thermoelastic rotating medium with two temperatures, in the presence of the combined effects of Hall currents and magnetic field. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi theories of type-II and type-III. Laplace and Fourier transform techniques are applied to solve the problem. The analytical expressions of displacements, stress components, temperature change, and current density components are obtained in the transformed domain. A numerical inversion technique has been applied to obtain the results in the physical domain. Numerical simulated results are depicted graphically to show the effect of Hall current and two temperatures on resulting quantities. Some special cases are also deduced from the present investigation.  相似文献   
5.
Purpose: To develop and optimize nanoemulsion (NE)-based emulgel (EG) formulation as a potential vehicle for topical delivery of tea tree oil (TTO).

Methodology: Central composite design was adopted for optimizing the processing conditions for NE preparation by high energy emulsification method viz. surfactant concentration, co-surfactant concentration, and stirring speed. The optimized NE was developed into emulgel (EG) using pH sensitive polymer Carbopol 940 and triethanolamine as alkalizer. The prepared EG was evaluated for its pH, viscosity, and texture parameters, ex vivo permeation at 37?°C and stability. Antimicrobial evaluation of EG in comparison to conventional gel and pure TTO was also carried out against selected microbial strains.

Results and discussion: Optimized NE had particle size and zeta potential of 16.23?±?0.411?nm and 36.11?±?1.234?mV, respectively. TEM analysis revealed the spherical shape of droplets. The pH of EG (5.57?±?0.05?) was found to be in accordance with the range of human skin pH. EG also illustrated efficient permeation (79.58?μL/cm2) and flux value (JSS) of 7.96?μL cm2/h through skin in 10?h. Viscosity and texture parameters, firmness (9.3?±?0.08?g), spreadability (2.26?±?0.06?mJ), extrudability (61.6?±?0.05?mJ), and adhesiveness (8.66?±?0.08?g) depict its suitability for topical application. Antimicrobial evaluation of EG with same amount of TTO as conventional gel revealed broader zones of growth inhibitions against all the selected microbial strains. Moreover, EG was also found to be nonirritant (PII 0.0833). These parameters were consistent over 90 d.

Conclusion: TTO EG turned out to be a promising vehicle for the topical delivery of TTO with enhanced therapeutic efficacy.  相似文献   
6.
The goal of this work is to present a causation modeling methodology with the ability to accurately infer blood glucose levels using a large set of highly correlated noninvasive input variables over an extended period of time. These models can provide insight to improve glucose monitoring, and glucose regulation through advanced model-based control technologies. The efficacy of this approach is demonstrated using real data from a type 2 diabetic (T2D) subject collected under free-living conditions over a period of 25 consecutive days. The model was identified and tested using eleven variables that included three food variables as well as several activity and stress variables. The model was trained using 20 days of data and validated using 5 days of data. This gave a fitted correlation coefficient of 0.70 and an average absolute error (AAE) (i.e., the average of the absolute values for the measured glucose concentration minus modeled glucose concentration) of 13.3 mg/dL for the validation data. This AAE result was significantly better than the subject’s personal glucose meter AAE of 15.3 mg/dL for replicated measurements.  相似文献   
7.
Present paper reports the synthesis of nanostructured (Sn–Ti)O2 via physicochemical method, its characterization and performance as liquefied petroleum gas (LPG) sensor. The synthesized material was characterized using XRD that confirmed the formation of (Sn–Ti)O2 nanocomposite. Minimum crystallite size was found as 7 nm. The material was also investigated through SEM, DSC, FTIR, PL and UV–Vis spectrophotometer. Further, the pellet, thick and thin films were fabricated for the sensing analysis. Pellets (9 mm diameter, 4 mm thickness) of (Sn–Ti)O2 nanocomposite were made by hydraulic pressing machine by applying uniaxial pressure of 616 MPa, thick films (thickness ~2 µm) were made by screen printing technique and thin films were prepared using a Photo resist spinner unit. Further at room temperature, the pellet and films were exposed to LPG in a gas chamber under controlled conditions at room temperature and variations in resistance with the concentrations of LPG were observed. The maximum value of sensitivity of solid state pellet, thick and thin films based sensors were found 7, 9 and 39 for 5 vol% of LPG, respectively. Sensing characteristics were found to be reproducible, after 6 months of their fabrication, indicating the stability of the sensors.  相似文献   
8.
The application of hydrocolloid gel particles is potentially useful in food, chemical, and pharmaceutical industries. Alginate gel particles are one of the more commonly used hydrocolloid gel particles due to them being biocompatible, nontoxic, biodegradable, cheap, and simple to produce. They are particularly valued for their application in encapsulation. Encapsulation in alginate gel particles confers protective benefits to cells, DNA, nutrients, and microbes. Slow release of flavors, minerals, and drugs can also be achieved by encapsulation in gel particles. The particle size and shape of the gel particles are crucial for specific applications. In this review, current methods of producing alginate gel particles will be discussed, taking into account their advantages, disadvantages, scalability, and impact on particle size. The physical properties of alginate gel particles will determine the effectiveness in different application conditions. This review will cover the current understanding of the alginate biopolymer, gelation mechanisms and factors affecting release properties, gel strength, and rheology of the alginate gel particle systems.  相似文献   
9.
10.
The processing parameters have been optimized to achieve highly pure and fully dense pellets of calcium cobalt oxide (Ca3Co4O9) from solid-state ball milled calcium carbonate and cobalt oxide mixtures, calcined at optimized temperature and time, and consolidated by hot-pressing. The microscopic, spectroscopic, and thermal analysis suggest samples with longer ball-milling time require less calcination time for synthesizing highly pure crystalline phases of Ca3Co4O9, and provide 99.2 ± 0.5% relative density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号