首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
机械仪表   1篇
无线电   9篇
原子能技术   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   2篇
  2007年   1篇
  2005年   1篇
  2002年   4篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 21 毫秒
1.
High-resolution x-ray diffraction (XRD) and atomic force microscopy (AFM) of pendeo-epitaxial (PE) GaN films confirmed transmission electron microscopy (TEM) results regarding the reduction in dislocations in the wings. Wing tilt ≤0.15° was due to tensile stresses in the stripes induced by thermal expansion mismatch between the GaN and the SiC substrate. A strong D°X peak at ≈3.466 eV (full-width half-maximum (FWHM) ≤300 μeV) was measured in the wing material. Films grown at 1020°C exhibited similar vertical [0001] and lateral [11 0] growth rates. Increasing the temperature increased the latter due to the higher thermal stability of the GaN(11 0). The (11 0) surface was atomically smooth under all growth conditions with a root mean square (RMS)=0.17 nm.  相似文献   
2.
AlxGa1-xN (x=0.05) ultraviolet (UV) avalanche photodiodes grown on a GaN substrate are reported. The epitaxial structure was grown by metal-organic chemical vapor deposition on a free-standing bulk GaN substrate having low dislocation density. The growth conditions for AlxGa1-xN epitaxial layers on GaN substrates were optimized to achieve improved crystalline and structural quality. With UV illumination at lambda~250 nm, devices with mesa diameters of ~30 mum achieve stable maximum optical gains of ~50 at a reverse bias voltage of ~87 V.  相似文献   
3.
4.
After implementing a few design modifications (referred to as the “Modified Reference Design”) in 2009, the Vacuum Vessel (VV) design had been stabilized. The VV design is being finalized, including interface components such as support rails and feedthroughs for the in-vessel coils. It is necessary to make adjustments to the locations of the blanket supports and manifolds to accommodate design modifications to the in-vessel coils. The VV support design is also being finalized considering a structural simplification. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. The detailed layout of ferritic steel plates and borated steel plates was optimized based on the toroidal field ripple analysis. A dynamic test on the inter-modular key to support the blanket modules was performed to measure the dynamic amplification factor (DAF). An R&D program has started to select and qualify the welding and cutting processes for the port flange lip seal. The ITER VV material 316 L(N) IG was already qualified and the Modified Reference Design was approved by the Agreed Notified Body (ANB) in accordance with the Nuclear Pressure Equipment Order procedure.  相似文献   
5.
Pendeo-epitaxy (PE)1 from raised, [0001] oriented GaN stripes covered with silicon nitride masks has been employed for the growth of coalesced films of GaN(0001) with markedly reduced densities of line and planar defects on Si(111)-based substrates. Each substrate contained previously deposited 3C-SiC(111) and AlN(0001) transition layers and a GaN seed layer from which the stripes were etched. The 3C-SiC transition layer eliminated chemical reactions between the Si and the NH3 and the Ga metal from the decomposition of triethylgallium. The 3C-SiC and the GaN seed layers, each 0.5 μm thick, were also used to minimize the cracking and warping of the GaN/SiC/silicon assembly caused primarily by the stresses generated on cooling due to the mismatches in the coefficients of thermal expansion. Tilting in the coalesced GaN epilayers of 0.2° was confined to areas of lateral overgrowth over the masks; no tilting was observed in the material suspended above the trenches. The strong, low-temperature PL band-edge peak at 3.456 eV with a FWHM of 17 meV was comparable to that observed in PE GaN films grown on AlN/6H-SiC(0001) substrates.  相似文献   
6.
We have examined the performance of gallium nitride (GaN) high-power Schottky diodes fabricated on unintentionally doped (UID) metalorganic chemical vapor deposition (MOCVD) films grown simultaneously on four substrates ranging in threading dislocation density from 5 × 103 cm - 2 to 1010 cm - 2. The substrates were an intentionally doped and a UID freestanding hydride vapor phase epitaxy substrate, an MOCVD GaN template grown on a sapphire wafer, and a bulk GaN substrate grown via an ammonothermal method. Capacitance–voltage (CV) results showed the carrier concentration was ~2 × 1016 cm?3 for films grown on each of the four substrates. With that doping level, the theoretical breakdown voltage (V b) is ~1600 V. However, measured V b for the devices tested on each of the four substrates fell short of this value. Also, the breakdown voltages across each of the four substrates were not substantially different. This result was especially surprising for films grown on bulk GaN substrates, because of their superior crystal quality, as determined from their x-ray rocking curve widths. Simple probability calculations showed that most of the diodes tested on the bulk substrate did not cover a single threading dislocation. Although optimization of edge-termination schemes is likely to improve V b, we believe that point defects, not threading dislocations, are the main reason for the reduced performance of these devices.  相似文献   
7.
The contract for the seven European Sectors of the ITER Vacuum Vessel (VV) was placed at the end of 2010 with a consortium of three Italian companies. The task of placing and the initial take-off of this large and complex contract, one of the largest placed by F4E, the European Domestic Agency for ITER, is described. A stringent quality controlled system with a bespoke Vacuum Vessel Project Lifecycle Management system to control the information flow, based on ENOVIA SmarTeam, was developed to handle the storage and approval of Documentation including links to the F4E Vacuum Vessel system and ITER International Organization System interfaces. The VV Sector design and manufacturing schedule is based on Primavera software, which is cost loaded thus allowing F4E to carry out performance measurement with respect to its payments and commitments. This schedule is then integrated into the overall Vacuum Vessel schedule, which includes ancillary activities such as instruments, preliminary design and analysis. The VV Sector Risk Management included three separate risk analyses from F4E and the bidders, utilizing two different methodologies. These efforts will lead to an efficient and effective implementation of this contract, vital to the success of the ITER machine, since the Vacuum Vessel is the biggest single work package of Europe's contribution to ITER and is the largest component of the ITER device.  相似文献   
8.
Pendeo-epitaxy employs lateral growth from etched seed forms to achieve a marked reduction in dislocation density in a material. In this research, high-resolution X-ray diffraction and atomic force microscopy of GaN stripes and the laterally grown wings confirmed transmission electron microscopy results regarding the reduction in dislocations in the latter regions. Micro-Raman and X-ray diffraction measurements showed the wings to be tilted /spl les/0.15/spl deg/ due to tensile stresses in the stripes induced primarily by the mismatch in the coefficients of thermal expansion between the GaN stripe and the SiC substrate. A strong, low-temperature D/spl deg/X peak at /spl ap/3.466 eV with a FWHM of /spl les/300 /spl mu/eV was measured in the wing material by micro-photoluminescence. Films grown at 1020/spl deg/C exhibited similar vertical [0001] and lateral [112~0] growth rates. Increasing the growth temperature increased the latter due to the higher thermal stability of the (112~0) GaN and initiated growth of spiral hillocks on the (0001) surface of the stripes. The latter were due to adatom diffusion to heterogeneous steps previously nucleated at the intersections of pure screw or mixed dislocations. The (112~0) surface was atomically smooth under all growth conditions with a root mean square roughness value of 0.17 nm.  相似文献   
9.
Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R&D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.  相似文献   
10.
Advanced rail clamp networks for ESD protection   总被引:1,自引:1,他引:0  
A new, area efficient, boosted and distributed active MOSFET rail clamp network for I/O pad ESD protection is presented. In addition, a compact new rail clamp trigger circuit with high resistance to false triggering is introduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号