首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学工业   2篇
无线电   6篇
一般工业技术   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The two protection methods wrapping and steering used in IEEE 802.17 resilient packet ring (RPR) provide fast but very inefficient and limited network failure recovery. Due to the increased length of the backup path, RPR suffers from high traffic loss, a decreased throughput-delay performance, and the lack of resilience against multiple link and/or node failures. To achieve an improved resilience, interconnecting a subset of the ring nodes by means of a dark-fiber single-hop star wavelength division multiplexing (WDM) network is proposed. In doing so, the ring network is divided into separate domains, each being fully recoverable from a single link or node failure without losing full network connectivity. A novel hybrid fault recovery technique, termed protectoration, is proposed and examined by means of probabilistic analysis and simulation in terms of stability, channel utilization, and throughput-delay performance. The proposed protectoration technique 1) combines the fast recovery time of protection and the bandwidth efficiency of restoration, 2) provides full recovery from multiple link and node failures, 3) builds on both wrapping and steering protection methods of RPR and, thus, allows for an evolutionary upgrade of existing RPR networks, and 4) does not require the convergence of routing protocols in response to failures and, thus, improves the routing stability and network availability. Numerical investigations in this paper show that the location of failures has a strong impact on the network performance. For a given failure location, the protectoration technique is able to accommodate multiple ring failures without significant performance loss.  相似文献   
2.
The dilithium ( 1 ), disodium ( 2 ), dipotassium ( 3 ) and dicesium ( 4 ) salt as well as the calcium ( 5 ), strontium ( 6 ) and barium ( 7 ) salt of 5,5′‐bis(1‐hydroxytetrazole) were prepared and characterized including NMR‐, IR‐ and Raman spectroscopy, mass spectrometry, elemental analysis and differential scanning calorimetry. The crystal structures of 1 , 2 and 4 – 6 were additionally determined by single‐crystal X‐ray diffraction. The sensitivities of the salts towards impact, friction and electrostatic discharge were determined by means of BAM (Bundesanstalt für Materialforschung‐ und prüfung) methods. The potential use of 1 , 6 and 7 as coloring agents in pyrotechnical mixtures as well as the utilization of 3 and 4 as additives in near infrared (NIR) emitting pyrotechnical formulations was examined.  相似文献   
3.
A new concept of an evolution system of measures for stochastic flows is considered. It corresponds to the notion of an invariant measure for random dynamical systems (or cocycles). The existence of evolution systems of measures for asymptotically compact stochastic flows is obtained. For a white noise stochastic flow, there exists a one to one correspondence between evolution systems of measures for a stochastic flow and evolution systems of measures for the associated Markov transition semigroup. As an application, an alternative approach for evolution systems of measures of 2D stochastic Navier–Stokes equations with a time-periodic forcing term is presented.  相似文献   
4.
Under rather general conditions we show that any monotone random dynamical system on an (admissible) subset of a partially ordered Banach space V has a unique invariant measure. This measure is Dirac, i.e. it is generated by some stationary process. If the cone V + of non-negative elements of V is normal, then this stationary process is a global random attractor with respect to convergence in probability. As examples we consider one-dimensional ordinary and retarded stochastic differential equations, a stochastic model of a biochemical control circuit, a class of parabolic stochastic partial differential equations (PDEs) with additive noise and interacting particle systems.  相似文献   
5.
Packet-switching WDM ring networks with a hotspot transporting unicast, multicast, and broadcast traffic are important components of high-speed metropolitan area networks. For an arbitrary multicast fanout traffic model with uniform, hotspot destination, and hotspot source packet traffic, we analyze the maximum achievable long-run average packet throughput, which we refer to as multicast capacity, of bi-directional shortest path routed WDM rings. We identify three segments that can experience the maximum utilization, and thus, limit the multicast capacity. We characterize the segment utilization probabilities through bounds and approximations, which we verify through simulations. We discover that shortest path routing can lead to utilization probabilities above one half for moderate to large portions of hotspot source multi- and broadcast traffic, and consequently multicast capacities of less than two simultaneous packet transmissions. We outline a one-copy routing strategy that guarantees a multicast capacity of at least two simultaneous packet transmissions for arbitrary hotspot source traffic.  相似文献   
6.
Just-in-Time Scheduling for Multichannel EPONs   总被引:1,自引:0,他引:1  
We investigate optical network unit (ONU) grant scheduling techniques for multichannel Ethernet passive optical networks (EPONs), such as wavelength division multiplexed (WDM) EPONs. We take a scheduling theoretic approach to solving the grant scheduling problem. We introduce a two-layer structure of the scheduling problem and investigate techniques to be used at both layers. We present an extensive ONU grant scheduling simulation study that provides: 1) insight into the nature of the ONU grant scheduling problem and 2) indication of which scheduling techniques are best for certain conditions. We find that the choice of scheduling framework has typically the largest impact on average queueing delay and achievable channel utilization. An offline scheduling framework is not work conserving and consequently wastes channel resources while waiting for all ONU REPORT messages before making access decisions. An online scheduling framework, although work conserving, does not provide the best performance since scheduling decisions are made with the information contained in a single ONU REPORT. We propose a novel online just-in-time (JIT) scheduling framework that is work conserving while increasing scheduling control by allowing the channel availability to drive the scheduling process. In online JIT, multiple ONU REPORTs can be considered together when making scheduling decisions, resulting in lower average queueing delay under certain conditions and a more effective service differentiation of ONUs.  相似文献   
7.
Metro wavelength-division multiplexed (WDM) networks play an important role in the emerging Internet hierarchy; they interconnect the backbone WDM networks and the local-access networks. The current circuit-switched SONET/synchronous digital hierarchy (SDH)-over-WDM-ring metro networks are expected to become a serious bottleneck-the so-called metro gap-as they are faced with an increasing amount of bursty packet data traffic and quickly increasing bandwidths in the backbone networks and access networks. Innovative metro WDM networks that are highly efficient and able to handle variable-size packets are needed to alleviate the metro gap. In this paper, we study an arrayed-waveguide grating (AWG)-based single-hop WDM metro network. We analyze the photonic switching of variable-size packets with spatial wavelength reuse. We derive computationally efficient and accurate expressions for the network throughput and delay. Our extensive numerical investigations-based on our analytical results and simulations-reveal that spatial wavelength reuse is crucial for efficient photonic packet switching. In typical scenarios, spatial wavelength reuse increases the throughput by 60% while reducing the delay by 40%. Also, the throughput of our AWG-based network with spatial wavelength reuse is roughly 70% larger than the throughput of a comparable single-hop WDM network based on a passive star coupler (PSC).  相似文献   
8.
Packet-switched unidirectional and bidirectional ring wavelength division multiplexing (WDM) networks with destination stripping provide an increased capacity due to spatial wavelength reuse. Besides unicast traffic, future destination stripping ring WDM networks also need to support multicast traffic efficiently. This article examines the largest achievable transmitter throughput, receiver throughput, and multicast throughput of both unidirectional and bidirectional ring WDM networks with destination stripping. A probabilistic analysis evaluates both the nominal capacity, which is based on the mean hop distances traveled by the multicast packet copies, and the effective capacity, which is based on the ring segment with the highest utilization probability, for each of the three throughput metrics. The developed analytical methodology accommodates not only multicast traffic with arbitrary multicast fanout but also unicast and broadcast traffic. Numerical investigations compare the nominal transmission, receiver, and multicast capacities with the effective transmission, receiver, and multicast capacities and examine the impact of number of ring nodes and multicast fanout on the effective transmission, reception, and multicast capacity of both types of ring networks for different unicast, multicast, and broadcast traffic scenarios and different mixes of unicast and multicast traffic. The presented analytical methodology enables the evaluation and comparison of future multicast-capable medium access control (MAC) protocols for unidirectional and bidirectional ring WDM networks in terms of transmitter, receiver, and multicast throughput efficiency.  相似文献   
9.
Research on multicasting in single-hop wavelength-division-multiplexing (WDM) networks has so far focused on networks based on the passive star coupler (PSC), a broadcast device. It has been shown that multicasting performance is improved by partitioning multicast transmissions into multiple multicast copies. However, the channel bottleneck of the PSC, which does not allow for spatial wavelength reuse, restricts the multicast performance. We investigate multicasting in a single-hop WDM network that is based on an arrayed-waveguide grating (AWG), a wavelength routing device that allows for spatial wavelength reuse. In our network, optical multicasting is enabled by wavelength-insensitive splitters that are attached to the AWG output ports. Multicasts are partitioned among the splitters and each multicast copy is routed to a different splitter by sending it on a different wavelength. We demonstrate that the spatial wavelength reuse in our network significantly improves the throughput-delay performance for multicast traffic. By means of analysis and simulations, we also demonstrate that, for a typical mix of unicast and multicast traffic, the throughput-delay performance is dramatically increased by transmitting multicast packets concurrently with control information in the reservation medium access control protocol of our AWG-based network.  相似文献   
10.
Alkaline metal salts are widely used in pyrotechnic formulations. For NIR pyrotechnics, potassium, and cesium nitrate are mainly used as oxidizers and infrared emitters. Herein, new NIR illuminant formulations were tested using several potassium and cesium salts of high‐nitrogen compounds such as tetrazole and triazole derivatives. The research of new formulations comprises the evaluation of sensitivity data and radiometric measurements of new formulations. It was further investigated whether the IR emission can be improved using different nitrogen releasing agents like aminotetrazole or diethylene triamine trinitrate (DETT) as hexamethylenetetramine replacements.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号