首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
无线电   11篇
一般工业技术   15篇
  2011年   1篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Tyo JS  Rowe MP  Pugh EN  Engheta N 《Applied optics》1996,35(11):1855-1870
Polarization-difference imaging (PDI) was recently presented by us as a method of imaging through scattering media [Opt. Lett. 20, 608 (1995)]. Here, PDI is compared with conventional, polarizationblind imaging systems under a variety of conditions not previously studied. Through visual and numerical comparison of polarization-difference and polarization-sum images of metallic targets suspended in scattering media, target features initially visible in both types of images are shown to disappear in polarization-sum images as the scatterer concentration is increased, whereas these features remain visible in polarization-difference images. Target features producing an observed degree of linear polarization of less than 1% are visible in polarization-difference images. The ability of PDI to suppress partially polarized background variations selectively is demonstrated, and discrimination of target features on the basis of polarization information is discussed. Our results show that, when compared with conventional imaging, PDI yields a factor of 2-3 increase in the distance at which certain target features can be detected.  相似文献   
2.
Polarization-difference (PD) imaging techniques have been demonstrated to improve the detectability of target features that are embedded in scattering media. The improved detectability occurs for both passive imaging in moderately scattering media (<5 optical depths) and active imaging in more highly scattering media. These improvements are relative to what is possible with equivalent polarization-blind, polarization-sum (PS) imaging under the same conditions. In this investigation, the point-spread functions (PSF's) for passive PS and PD imaging in single-scattering media are studied analytically, and Monte Carlo simulations are used to study the PSF's in single- and moderately multiple-scattering media. The results indicate that the PD PSF can be significantly narrower than the corresponding PS PSF, implying that better images of target features with high-spatial-frequency information can be obtained by using differential polarimetry in scattering media. Although the analysis was performed for passive imaging at moderate optical depths, the results lend insight into experiments that have been performed in more highly scattering media with active imaging methods to help mitigate the effects of multiple scattering.  相似文献   
3.
Pulsed power is a technology that is suited to drive electrical loads requiring very large power pulses in short bursts (high-peak power). Certain applications require technology that can be deployed in small spaces under stressful environments, e.g., on a ship, vehicle, or aircraft. In 2001, the U.S. Department of Defense (DoD) launched a long-range (five-year) Multidisciplinary University Research Initiative (MURI) to study fundamental issues for compact pulsed power. This research program is endeavoring to: 1) introduce new materials for use in pulsed power systems; 2) examine alternative topologies for compact pulse generation; 3) study pulsed power switches, including pseudospark switches; and 4) investigate the basic physics related to the generation of pulsed power, such as the behavior of liquid dielectrics under intense electric field conditions. Furthermore, the integration of all of these building blocks is impacted by system architecture (how things are put together). This paper reviews the advances put forth to date by the researchers in this program and will assess the potential impact for future development of compact pulsed power systems.  相似文献   
4.
Generalized algebraic scene-based nonuniformity correction algorithm   总被引:5,自引:0,他引:5  
A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.  相似文献   
5.
Hoover BG  Tyo JS 《Applied optics》2007,46(34):8364-8373
Linear and nonlinear components analysis of data from a monostatic laser polarimeter is developed and applied to the task of remote, nonimaging discrimination among different textures on paint and polymer coupons independent of their spatial orientations. Both principal-components analysis and nonlinear components analysis are applied to multidimensional laser data in measured Mueller matrices, with discrimination via cluster segmentation in derived linear and nonlinear constant channels. Textures on the discriminated coupons are generated by heating and illustrated in optical micrographs.  相似文献   
6.
New classes of spectral sensors are emerging that have significant overlap in the band spectral response functions. While conventional sensors such as the Multispectral Thermal Images (MTI) or Landsat may have responses with a few percent overlap between adjacent bands, some of the emerging sensors can have more than 50% correlation among all spectral bands. The traditional geometrical models used to describe spectral data fail when such high levels of correlation exist. In this paper we present a generalized geometrical model that relies on functional analysis. We define a sensor space and a scene space that can be used to characterize the suitability of a sensor for a particular spectral sensing task. We demonstrate that classifiers based on first-order distance and angle metrics fail for sensors with highly correlated bands unless appropriate preprocessing is carried out. We further show that second-order statistical classifiers are largely immune to many of the problems introduced by the correlated band responses.  相似文献   
7.
A concept of prompt aperture efficiency is introduced for the purpose of comparing and optimizing the performance of impulse radiating antennas (IRAs). The aperture efficiencies of popular lens and reflector IRAs are computed as the ratios of peak radiated power densities on boresight compared with that produced by an ideal IRA with an aperture of equal area and equal total input power. Loss of aperture efficiency occurs through two distinct mechanisms: from power that falls outside the aperture and is lost and from nonuniform power and polarization distributions within the aperture. Both loss mechanisms are addressed, and means for increasing efficiencies are identified. The optimum aperture for a given feed structure is derived. Prompt aperture efficiencies approaching 100% are feasible in TEM-horn arrays and similar structures  相似文献   
8.
This Polarization in Remote Sensing special issue of Applied Optics presents 11 papers that describe research in polarization measurements and applications. The subject matter covered ranges from a review of passive imaging polarimetry, the first paper, to a presentation of twilight atmospheric polarization measurements, the last.  相似文献   
9.
Tyo JS 《Applied optics》2002,41(4):619-630
The relationship between system condition and signal-to-noise ratio (SNR) in reconstructed Stokes parameter images is investigated for rotating compensator, variable retardance, and rotating analyzer Stokes vector (SV) polarimeters. A variety of optimal configurations are presented for each class of systems. The operation of polarimeters is discussed in terms of a four-dimensional conical vector space; and the concept of nonorthogonal bases, frames, and tight frames is introduced to describe the operation of SV polarimeters. Although SNR is an important consideration, performance of a polarimeter in the presence of errors in the calibration and alignment of the optical components is also important. The relationship between system condition and error performance is investigated, and it is shown that an optimum system from the point of view of SNR is not always an optimum system with respect to error performance. A detailed theory of error performance is presented, and the error of a SV polarimeter is shown to be related to the stability and condition number of the polarization processing matrices. The rms error is found to fall off as the inverse of the number of measurements taken. Finally, the concepts used to optimize SV polarimeters are extended to be useful for full Mueller matrix polarimeters.  相似文献   
10.
Tyo JS  Turner TS 《Applied optics》2001,40(9):1450-1458
An imaging, variable-retardance, Fourier-transform spectropolarimeter is presented that is capable of creating spectropolarimetric images of scenes with independent characterization of spatial, spectral, and polarimetric information. The device has a spectral resolution of ~225 cm(-1), making it truly hyperspectral in nature. Images of canonical targets such as spheres and cylinders obtained in a laboratory setup are presented. The results demonstrate the capability of developing systems to collect spectropolarimetric data of field images by use of the concept of pushbroom scanning and serial collection of polarimetric information. Further development of a parallelized collection strategy would allow the collection of near-real-time images of real-world targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号