首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
轻工业   1篇
无线电   2篇
一般工业技术   1篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Numerical solutions of volume integral equations with high contrast inhomogeneous materials require extremely fine discretization rates making their utility very limited. Given the application of such materials for antennas and metamaterials, it is extremely important to explore computationally efficient modeling methods. In this paper, we propose a novel volume integral equation technique where the domain is divided into different material regions each represented by a corresponding uniform background medium coupled with a variation, together representing the overall inhomogeneity. This perturbational approach enables us to use different Green's functions for each material region. Hence, the resulting volume-surface integral equation alleviates the necessity for higher discretizations within the higher contrast regions. With the incorporation of a junction resolution algorithm for the surface integral equations defined on domain boundaries, we show that the proposed volume-surface integral equation formulation can be generalized to model arbitrary composite structures incorporating conducting bodies as well as highly inhomogeneous material regions.  相似文献   
2.
3.
A moment method solution of a volume integral equation (VIE) using parametric geometry is presented. Typical Galerkin testing is shown not to be appropriate for curvilinear geometries, and a new testing scheme is proposed. By exploiting the orthogonality relationships between covariant and contravariant unitary vectors, testing functions in contravariant projection form and field expansion basis in covariant projection form were chosen.  相似文献   
4.
A generalised volume-surface integral equation is extended by way of the periodic Green's function to model arbitrarily complex designs of metamaterials consisting of high-contrast inhomogeneous anisotropic material regions as well as metallic inclusions. The unique aspect of the formulation is the integration of boundary and volume integral equations to increase modelling efficiency and capability. Specifically, the boundary integral approach with equivalent surface currents is adopted over regions consisting of piecewise homogeneous materials as well as metallic perfect electric/magnetic conductor inclusions, whereas the volume integral equation is employed only in inhomogeneous and/or anisotropic material regions. Because the periodic Green's function only needs to be evaluated for the equivalent surface currents enclosing an inhomogeneous and/or anisotropic region, matrix fill time is much less as compared to using a volume formulation. Furthermore, the incorporation of curvilinear finite elements allows for greater geometrical modelling flexibility for arbitrarily shaped high-contrast regions found in typical designs of engineered metamaterials  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号