首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
无线电   6篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1999年   3篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
The idea of adaptive state allocation (ASA) algorithm is used in this paper to substantially reduce the computational complexity of the maximum-likelihood sequence detection and estimation (MLSD/MLSDE) receiver without a significant degradation in its performance. In the ASA algorithm, the total number of states assigned to the trellis and the number of states selected from the entire set are changed adaptively based on the short-term power of the channel impulse response (CIR) or its estimate. The ASA algorithm is a combination of two methods: adaptive threshold (AT) and adaptive state partitioning (AP). In the AT method, a threshold value is formulated based on the probability of removing the correct state in the trellis diagram. At each time, only the paths whose costs are less than the minimum cost (corresponding to the best survivor path) plus the threshold value are retained and are extended to the next trellis stage. The AT method significantly reduces the computational complexity of the regular MLSDE mostly at high signal-to-noise ratio (SNR) with a negligible loss in performance. Simulation results for fading channels show that the AT method typically selects one trellis state (the minimum possible number of states) at high SNRs. In the AP method, the branch metrics are fused and diffused adaptively by using the Kullback-Leibler (KL) distance metric invoked for quantifying the differences between the probability density functions of the correct and incorrect branch metrics in the trellis. The adaptation is done such that the channel coefficients with short-term power less than a threshold are assumed to be zero in computing the branch metrics. The AP method decreases the computational complexity of the regular MLSDE at low SNRs  相似文献   
2.
Recursive (online) expectation-maximization (EM) algorithm along with stochastic approximation is employed in this paper to estimate unknown time-invariant/variant parameters. The impulse response of a linear system (channel) is modeled as an unknown deterministic vector/process and as a Gaussian vector/process with unknown stochastic characteristics. Using these models which are embedded in white or colored Gaussian noise, different types of recursive least squares (RLS), Kalman filtering and smoothing and combined RLS and Kalman-type algorithms are derived directly from the recursive EM algorithm. The estimation of unknown parameters also generates new recursive algorithms for situations, such as additive colored noise modeled by an autoregressive process. The recursive EM algorithm is shown as a powerful tool which unifies the derivations of many adaptive estimation methods  相似文献   
3.
The theory of adaptive sequence detection incorporating estimation of channel and related parameters is studied in the context of maximum-likelihood (ML) principles in a general framework based on the expectation and maximization (EM) algorithm. A generalized ML sequence detection and estimation (GMLSDE) criterion is derived based on the EM approach, and it is shown how the per-survivor processing and per-branch processing methods emerge naturally from GMLSDE. GMLSDE is developed into a real time detection/estimation algorithm using the online EM algorithm with coupling between estimation and detection. By utilizing Titterington's (1984) stochastic approximation approach, different adaptive ML sequence detection and estimation (MLSDE) algorithms are formulated in a unified manner for different channel models and for different amounts of channel knowledge available at the receiver. Computer simulation results are presented for differentially encoded quadrature phase-shift keying in frequency flat and selective fading channels, and comparisons are made among the performances of the various adaptive MLSDE algorithms derived earlier  相似文献   
4.
A new method is proposed in this paper to design the time-domain equalizer for orthogonal frequency division multiplexing systems based on maximizing signal-to-interference-plus-noise ratio (SINR) at the output of the equalizer. The method called Maximum SINR Time-domain Equalization (MSINR-TEQ) is derived based on a new formulation of SINR. Computer simulation and analytical results show the performance of the MSINR-TEQ method and its superiority in comparison with the performance of the much-used method of channel impulse response shortening.  相似文献   
5.
Robust and Improved Channel Estimation Algorithm for MIMO-OFDM Systems   总被引:2,自引:0,他引:2  
Multiple-input multiple-output (MIMO) system using orthogonal frequency division multiplexing (OFDM) technique has become a promising method for reliable high data-rate wireless transmission system in which the channel is dispersive in both time and frequency domains. Due to multiple cochannel interferences in a MIMO system, the accuracy of channel estimation is a vital factor for proper receiver design in order to realize the full potential performance of the MIMO-OFDM system. A robust and improved channel estimation algorithm is proposed in this paper for MIMO-OFDM systems based on the least squares (LS) algorithm. The proposed algorithm, called improved LS (ILS), employs the noise correlation in order to reduce the variance of the LS estimation error by estimating and suppressing the noise in signal subspace. The performance of the ILS channel estimation algorithm is robust to the number of antennas in transmit and receive sides. The new algorithm attains a significant improvement in performance in comparison with that of the regular LS estimator. Also, with respect to mean square error criterion and without using channel statistics, the ILS algorithm achieves a performance very close to that of the minimum mean square error (MMSE) estimator in terms of the parameters used in practical MIMO-OFDM systems. A modification of the ILS algorithm, called modified ILS (MILS), is proposed based on using the second order statistical parameters of channel. Analytically, it is shown that the MILS estimator achieves the exact performance of the MMSE estimator. Due to no specific data sequences being required to perform the estimation, in addition to the training mode, the proposed channel estimation algorithms can also be extended and used in the tracking mode with decision-aided method.  相似文献   
6.
This paper presents the adaptive state allocation (ASA) algorithm, a new scheme based on maximum likelihood sequence detection (MLSD) of signals transmitted over Rayleigh fading channels. Although MLSD is an optimal scheme, its computational complexity limits many applications. The ASA algorithm is a detection method whose performance is close to that of MLSD, but with greatly reduced computational complexity. Adaptive state partitioning in the trellis diagram is used in this algorithm by measuring the short-term received signal power. Also, an adaptive threshold for selecting only a few states of the trellis is employed in this algorithm based on the Chernoff distance between the probability density functions (PDFs) of correct and incorrect branch metrics. The ASA-DF, a special case of ASA using decision feedback, shows a very good tradeoff between the performance and computational complexity for selective fading channels. Using ASA with diversity reception not only improves the performance, but also decreases the computational complexity in comparison with the computational complexity of using MLSD with diversity reception  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号