首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   1篇
矿业工程   1篇
一般工业技术   1篇
自动化技术   1篇
  2024年   3篇
  2022年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
为了研究爆破震动作用下高地应力巷道的动力响应特征及其稳定性,以淮南潘三矿超前预裂卸压爆破扰动瓦斯综合治理巷为工程背景,通过理论分析建立了爆破作业扰动巷道围岩模型,并根据应力波传播理论及波前动量守恒定理推导出了爆破震动作用下巷道围岩振动方程。使用数值模拟研究了巷道围岩质点峰值振动速度(Peak Particle Velocity,PPV)的衰减特征,从应力分布规律的角度对理论分析进行了补充,并根据模拟结果对巷道围岩稳定性进行了分析。结果表明:巷道围岩振动方程显示,爆炸应力波入射角度的不同会导致巷道围岩不同区域的动态响应特征存在差异。随着爆心距增大,巷道轮廓面附近围岩PPV出现波动,并在自由面处获得最大峰值振速;地应力对巷道围岩PPV具有抑制作用,地应力越大抑制作用越明显,且不同位置围岩的PPV对地应力敏感度存在差异;随着地应力增大,爆破震动作用下巷道围岩受力状态从拉剪变为压剪,最大主应力和剪切应力也随之增大。研究认为随着埋深增加,在对爆破震动作用下巷道围岩的稳定性进行评估时地应力因素不可忽略。对于潘三矿超前预裂卸压爆破工程现场而言,除了巷道的直墙外,墙角、拱墙也是危险区域,应当着重予以加...  相似文献   
2.
针对厚硬顶板导致高矿压、高位钻孔瓦斯抽采效果不佳的问题,通过爆破相似模拟试验与理论分析相结合的研究方法,对普通爆破与切缝药包爆破载荷作用下物模的宏观裂纹分布模式、损伤特征以及应变和应力的演化规律进行分析,对爆破弱化半径进行定量计算.结果表明:模型表面爆破裂纹分布差异显著;使用损伤度(D)及波降率(η)对岩石爆破损伤情况进行定量表征,发现切缝药包爆破比普通爆破造成的有效损伤范围更大;动态应变信号分析表明,切缝方向上应力波波阵面速度更快、强度更高,岩层受到的爆炸动载更强,测点的峰值应变及峰值应力均显著大于普通爆破.理论计算表明切缝药包爆破弱化半径(21.8 m)大于普通爆破(16.5 m),使用切缝药包超前预裂爆破厚硬顶板可以保障巷道稳定性,并且更具经济效益.研究成果为解决厚硬顶板条件下的矿压与上隅角瓦斯综合防治问题具有一定的指导意义.  相似文献   
3.
为解决传统预裂爆破煤体裂隙无序扩展导致增透效果不佳的问题,开展了聚能爆破药管不同聚能罩张开角度对煤层增透效果影响研究。通过建立聚能罩微元闭合理论模型,分析了随着聚能罩角度减少时形成聚能射流的速度和质量变化;以此为基础对聚能爆破增透机制进行了分析。在实验室搭建了可从煤体宏观裂纹和应变数据多角度对试验模型进行分析的双向加载气固耦合爆破相似模拟试验系统,对含瓦斯煤体试块进行普通爆破和不同聚能张开角爆破模拟对比试验。结果表明,使用聚能药包相较于普通爆破能够有效引导裂纹在聚能罩开口方向上定向发育;随着聚能罩角度减少,聚能爆破后形成的裂纹在聚能方向上更加平滑,裂纹宽度也随之增加,试块剖面更加平整;根据超动态应变仪反演结果,1号测点60°、80°和100°聚能爆破的压应力峰值分别为普通爆破的1.52倍,1.26倍和1.08倍,且60°聚能爆破到达应力峰值的时间最短,表明随着聚能罩开口的减小,聚能方向上能量集中现象越明显。通过ANSYS/LS-DYNA软件对4种不同角度的聚能爆破进行对比分析。模拟结果中60°聚能爆破初始形成的聚能射流有效应力最大,聚能方向产生的裂纹最长。试验和模拟结果表明通过使用60...  相似文献   
4.
当前不少研究均得出煤层赋存原生CO气体的结论,但是未考虑钻孔施工过程中产生CO后被煤体吸附的可能。为探究西北地区易自燃煤层是否存在原生CO的问题,采用原始煤层原位钻孔探测方法进行原生CO探测试验。在未受采动影响的实体煤区域沿巷帮一字排开布置3个测试钻孔,钻孔密封后采用高纯N2置换密闭气室内气体,采用专用抽气泵抽取钻孔内气体,消除原位探测钻孔施工过程中煤体氧化产生CO对试验结果的影响。在分析煤层原生CO来源可能性及其涌出理论的基础上,探讨了密闭钻孔内气体浓度随时间变化特征,结果表明:密封后钻孔内O2和CO体积分数随密封时间的延长而迅速降低,12 d后O2体积分数稳定在2%以下;12 d后CO体积分数低于10-12,气相色谱仪未检测到CO气体;钻孔内气体主要为N2。由此推断,待测煤层中无原生CO气体。N2环境破煤试验和煤样常温恒温氧化试验结果表明,封孔初期检出的CO气体来源于钻孔施工破煤作业。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号