首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
能源动力   1篇
武器工业   1篇
一般工业技术   5篇
  2016年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 137 毫秒
1
1.
研究表明,主动式射流涡流发生器可有效控制超声速流动边界层的分离,且能根据实际情况进行自适应调节。该文基于制式122尾翼弹,通过在弹肩前端加装射流涡发生器控制边界层的流动分离,研究其对尾翼弹气动性能的影响。采用DES方法数值模拟了超声速条件下尾翼弹有无射流控制的流场变化情况,分析了加装射流前后尾翼弹表面流体边界层结构及其气动性能的变化规律。数值结果表明,射流控制可有效抑制弹体表面的流体分离,提高尾翼弹的升力与俯仰力矩、减少弹身震动,有利于提高其飞行稳定性及打击精度,可为超声速尾翼弹的改进提供指导。  相似文献   
2.
超声速弹箭表面的流体分离是影响飞行稳定的主要影响因素之一。研究表明,微楔涡流发生器可有效控制超声速流体边界层的流动分离。该文基于制式122火箭弹,通过在弹肩前端安装微楔来研究边界层流动分离控制对火箭弹气动性能的影响。运用DES方法数值模拟了122火箭弹在有无加装微楔条件下的流场变化,对比分析了微楔对弹体表面边界层结构以及弹气动数据的改变,讨论了微楔对弹的气动力及稳定性作用。数值结果表明,微楔可以抑制弹体表面流体分离,提高火箭弹的升力及俯仰力矩,减小马格努斯力矩,有利于提高其飞行稳定性及射击精度,可为相关旋转火箭弹的改进提供指导。  相似文献   
3.
基于大涡模拟(LES)方法,结合WENO格式与自适应网格加密(AMR)技术及沉浸边界法(IBM),对来流马赫数为Ma =2.5条件下的平板上微型三角楔绕流流场进行了数值模拟。数值模拟表明微型三角楔涡流发生器可以显著改变超声速流体边界层结构。计算结果清晰地显示了三角楔上游分离区的流场结构和下游各涡的流态,同时计算表明,微楔对边界层控制过程中,其下游的流向涡对与涡环结构都起了重要作用,并对其作用过程进行了讨论。数值计算与相关实验结果相符,且提供了流场的重要细节,揭示了微楔的控制机理,可为超声速边界层控制研究提供重要支持。  相似文献   
4.
基于大涡模拟(Large Eddy Simulation)方法,结合高阶TCD/WENO混合格式,对2.5Ma超声速激波/边界层干扰诱导的微楔和微叶片两种微涡流发生器控制进行了数值模拟。数值结果表明:从边界层厚度与分离区大小及结构变化均说明两种涡流发生器对激波边界层分离起到明显抑制作用。对于微楔式涡流发生器,入射激波对微楔尾涡压缩作用明显,使流向涡对的卷吸加强,从而增加边界层内外流体能量交换。微叶片式涡流发生器的控制机理与微楔相似,但其涡对在尾部较远处易破裂,会影响内外流体之间的能量交换。  相似文献   
5.
翼型绕流分离的微楔控制   总被引:1,自引:0,他引:1       下载免费PDF全文
基于大涡模拟(LES, Large Eddy Simulation),结合3阶WENO(Weighted Essentially Non-Oscillatory)格式与沉浸边界法(IBM, Immersed Boundary Method),对NACA0012翼型在来流马赫数为Ma=0.5以及10°攻角下,有无微型三角楔涡流发生器作用的三维绕流进行了数值模拟,对比了两者的流场结构变化。数值结果表明,微楔能显著改变翼型绕流的尾涡结构,并能缩小其表面边界层的分离,提高升力,并对微型三角楔涡流发生器的流体分离抑制机理进行了讨论。  相似文献   
6.
为了获得冲压加速器内高速流场与弹丸周围激波结构的特性,采用高精度WENO计算格式求解二维可压欧拉方程,结合自适应网格加密技术(AMR)与沉浸边界法(IBM),数值模拟了冲压加速器冷态实验.结果表明,计算方法很好地描述了冲压加速器内部流场和激波结构,完整地呈现了弹丸周围激波的形成与发展过程及相关参数的变化情况,可以对冲压加速器冷态实验给予一定的指导与借鉴.  相似文献   
7.
为了研究冲压加速器热壅塞模式时反应速率对推力的影响,利用ROE/HLL计算格式,结合自适应网格加密技术(AMR)与沉浸边界法(IBM),数值模拟了不同反应速率条件下的冲压加速器热壅塞模式燃烧流场.结果表明,若反应速率适当,则可产生稳定热壅塞燃烧,此时推力来自弹丸底部因爆燃产生的高压区.在此基础上,若进一步提高或降低反应速率,火焰阵面无法保持在弹丸底部,无法形成稳定的推力,导致弹丸推进失败.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号