首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   29篇
电工技术   1篇
综合类   1篇
化学工业   43篇
金属工艺   10篇
机械仪表   5篇
建筑科学   2篇
矿业工程   1篇
能源动力   7篇
轻工业   15篇
水利工程   1篇
无线电   16篇
一般工业技术   41篇
冶金工业   20篇
原子能技术   2篇
自动化技术   96篇
  2023年   4篇
  2022年   3篇
  2021年   10篇
  2020年   17篇
  2019年   9篇
  2018年   17篇
  2017年   10篇
  2016年   23篇
  2015年   11篇
  2014年   17篇
  2013年   23篇
  2012年   19篇
  2011年   19篇
  2010年   15篇
  2009年   11篇
  2008年   9篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
1.
We introduce a compact hierarchical procedural model that combines feature‐based primitives to describe complex terrains with varying level of detail. Our model is inspired by skeletal implicit surfaces and defines the terrain elevation function by using a construction tree. Leaves represent terrain features and they are generic parametrized skeletal primitives, such as mountains, ridges, valleys, rivers, lakes or roads. Inner nodes combine the leaves and subtrees by carving, blending or warping operators. The elevation of the terrain at a given point is evaluated by traversing the tree and by combining the contributions of the primitives. The definition of the tree leaves and operators guarantees that the resulting elevation function is Lipschitz, which speeds up the sphere tracing used to render the terrain. Our model is compact and allows for the creation of large terrains with a high level o detail using a reduced set of primitives. We show the creation of different kinds of landscapes and demonstrate that our model allows to efficiently control the shape and distribution of landform features.  相似文献   
2.
We generalize Kedlaya and Umans’ modular composition algorithm to the multivariate case. As a main application, we give fast algorithms for many operations involving triangular sets (over a finite field), such as modular multiplication, inversion, or change of order. For the first time, we are able to exhibit running times for these operations that are almost linear, without any overhead exponential in the number of variables. As a further application, we show that, from the complexity viewpoint, Charlap, Coley, and Robbins’ approach to elliptic curve point counting can be competitive with the better known approach due to Elkies.  相似文献   
3.
The fundamental macroscopic material property needed to quantify the flow in a fibrous medium viewed as a porous medium is the permeability. Composite processing models require the permeability as input data to predict flow patterns and pressure fields. As permeability reflects both the magnitude and anisotropy of the fluid/fiber resistance, efficient numerical techniques are needed to solve linear and nonlinear homogenization problems online during the flow simulation. In a previous work the expressions of macroscopic permeability were derived in a double-scale porosity medium for both Newtonian and rheo-thinning resins. In the linear case only a microscopic calculation on a representative volume is required, implying as many microscopic calculations as representative microscopic volumes exist in the whole fibrous structure. In the non-linear case, and even when the porous microstructure can be described by a unique representative volume, microscopic calculation must be carried out many times because the microscale resin viscosity depends on the macroscopic velocity, which in turn depends on the permeability that results from a microscopic calculation. Thus, a nonlinear multi-scale problem results. In this paper an original and efficient offline-online procedure is proposed for the efficient solution of nonlinear flow problems in porous media.  相似文献   
4.
This paper proposes a generalized finite element method based on the use of parametric solutions as enrichment functions. These parametric solutions are precomputed off‐line and stored in memory in the form of a computational vademecum so that they can be used on‐line with negligible cost. This renders a more efficient computational method than traditional finite element methods at performing simulations of processes. One key issue of the proposed method is the efficient computation of the parametric enrichments. These are computed and efficiently stored in memory by employing proper generalized decompositions. Although the presented method can be broadly applied, it is particularly well suited in manufacturing processes involving localized physics that depend on many parameters, such as welding. After introducing the vademecum‐generalized finite element method formulation, we present some numerical examples related to the simulation of thermal models encountered in welding processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
We describe the research and the integration methods we developed to make the HRP-2 humanoid robot climb vertical industrial-norm ladders. We use our multi-contact planner and multi-objective closed-loop control formulated as a QP (quadratic program). First, a set of contacts to climb the ladder is planned off-line (automatically or by the user). These contacts are provided as an input for a finite state machine. The latter builds supplementary tasks that account for geometric uncertainties and specific grasps procedures to be added to the QP controller. The latter provides instant desired states in terms of joint accelerations and contact forces to be tracked by the embedded low-level motor controllers. Our trials revealed that hardware changes are necessary, and parts of software must be made more robust. Yet, we confirmed that HRP-2 has the kinematic and power capabilities to climb real industrial ladders, such as those found in nuclear power plants and large scale manufacturing factories (e.g. aircraft, shipyard) and construction sites.  相似文献   
6.
We consider a Riemann surface X defined by a polynomial f(x,y) of degree d, whose coefficients are chosen randomly. Hence, we can suppose that X is smooth, that the discriminant δ(x) of f has d(d−1) simple roots, Δ, and that δ(0)≠0, i.e. the corresponding fiber has d distinct points {y1,…,yd}. When we lift a loop 0∈γCΔ by a continuation method, we get d paths in X connecting {y1,…,yd}, hence defining a permutation of that set. This is called monodromy.Here we present experimentations in Maple to get statistics on the distribution of transpositions corresponding to loops around each point of Δ. Multiplying families of “neighbor” transpositions, we construct permutations and the subgroups of the symmetric group they generate. This allows us to establish and study experimentally two conjectures on the distribution of these transpositions and on transitivity of the generated subgroups.Assuming that these two conjectures are true, we develop tools allowing fast probabilistic algorithms for absolute multivariate polynomial factorization, under the hypothesis that the factors behave like random polynomials whose coefficients follow uniform distributions.  相似文献   
7.
We have designed a new symbolic-numeric strategy for computing efficiently and accurately floating point Puiseux series defined by a bivariate polynomial over an algebraic number field. In essence, computations modulo a well-chosen prime number p are used to obtain the exact information needed to guide floating point computations. In this paper, we detail the symbolic part of our algorithm. First of all, we study modular reduction of Puiseux series and give a good reduction criterion for ensuring that the information required by the numerical part is preserved. To establish our results, we introduce a simple modification of classical Newton polygons, that we call “generic Newton polygons”, which turns out to be very convenient. Finally, we estimate the size of good primes obtained with deterministic and probabilistic strategies. Some of these results were announced without proof at ISSAC’08.  相似文献   
8.
9.
We carefully study the number of arithmetic operations required to compute rational Puiseux expansions of a bivariate polynomial F over a finite field. Our approach is based on the rational Newton-Puiseux algorithm introduced by D. Duval. In particular, we prove that coefficients of F may be significantly truncated and that certain complexity upper bounds may be expressed in terms of the output size. These preliminary results lead to a more efficient version of the algorithm with a complexity upper bound that improves previously published results. We also deduce consequences for the complexity of the computation of the genus of an algebraic curve defined over a finite field or an algebraic number field. Our results are practical since they are based on well established subalgorithms, such as fast multiplication of univariate polynomials with coefficients in a finite field.  相似文献   
10.
In his celebrated book [J.H. Conway, On Numbers and Games, Academic Press, New-York, 1976, Second edition (2001), A.K. Peters, Wellesley, MA], J.H. Conway introduced twelve versions of compound games. We analyze these twelve versions for the Node–Kayles game on paths. For usual disjunctive compound, Node–Kayles has been solved for a long time under normal play, while it is still unsolved under misère play. We thus focus on the ten remaining versions, leaving only one of them unsolved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号