首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
一般工业技术   1篇
自动化技术   1篇
  2021年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The field of robotics is evolving at a very high pace and with its increasing applicability in varied fields, the need to incorporate optimization analysis in robot system design is becoming more prominent. The present work deals with the optimization of the design of a 7-link gripper. As actuators play a crucial role in functioning of the gripper, the actuation system (piezoelectric (PZ), in this case) is also taken into consideration while performing the optimization study. A minimalistic model of PZ actuator, consisting different series and parallel assembly arrangements for both mechanical and electrical parts of the PZ actuators, is proposed. To include the effects of connector spring, the relationship of force with actuator displacement is replaced by the relation between force and the displacement of point of actuation at the physical system. The design optimization problem of the gripper is a non-linear, multi modal optimization problem, which was originally formulated by Osyczka (2002). In the original work, however, the actuator was a ‘constant output-force actuator model’ providing a constant output without describing the internal structure. Thus, the actuator model was not integrated in the optimization study. Four different cases of the PZ modelling have been solved using multi-objective evolutionary algorithm (MOEA). Relationship between force and actuator displacement is obtained using each set of non-dominated solutions. These relationships can provide a better insight to the end user to select the appropriate voltage and gripper design for specific application.  相似文献   
2.

Elastic mechanical metamaterials are the exemplar of periodic structures. These are artificially designed structures having idiosyncratic physical properties like negative mass and negative Young’s modulus in specific frequency ranges. These extreme physical properties are due to the spatial periodicity of mechanical unit cells, which exhibit local resonance. That is why scientists are researching the dynamics of these structures for decades. This unusual dynamic behavior is frequency contingent, which modulates wave propagation through these structures. Locally resonant units in the designed metamaterial facilitate bandgap formation virtually at any frequency for wavelengths much higher than the lattice length of a unit. Here, we analyze the band structure of piezo-embedded negative mass metamaterial using the generalized Bloch theorem. For a finite number of the metamaterial units coupled equation of motion of the system is deduced, considering purely resistive and shunted inductor energy harvesting circuits. Successively, the voltage and power produced by piezoelectric material along with transmissibility of the system are computed using the backward substitution method. The addition of the piezoelectric material at the resonating unit increases the complexity of the solution. The results elucidate, the insertion of the piezoelectric material in the resonating unit provides better tunability in the band structure for simultaneous energy harvesting and vibration attenuation. Non-dimensional analysis of the system gives physical parameters that govern the formation of mechanical and electromechanical bandgaps. Optimized numerical values of these system parameters are also found for maximum first attenuation bandwidth. Thus, broader bandgap generation enhances vibration attenuation, and energy harvesting can be simultaneously available, making these structures multifunctional. This exploration can be considered as a step towards the active elastic mechanical metamaterials design.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号