首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学工业   1篇
能源动力   3篇
一般工业技术   9篇
  2022年   2篇
  2019年   1篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
排序方式: 共有13条查询结果,搜索用时 140 毫秒
1.
This work proposes a novel approach called stand-alone hybrid system power pinch analysis (SAHPPA), which is particularly applicable for the design of off-grid distributed energy generation systems. The enhanced graphical tool employs new ways of utilising the recently introduced demand composite curve and supply composite curve while honouring and adapting fundamental energy systems engineering concepts. The SAHPPA method is capable of optimising the capacity of both the power generators and energy storage for biomass (i.e. non-intermittent) and solar photovoltaic (i.e. intermittent) energy technologies, which is a contribution to the emerging area of power pinch analysis. In addition, the procedure considers all possible efficiency losses in the overall system encompassing the charging–discharging and current inversion processes.  相似文献   
2.
This paper presents the current situation and projected planning of the electricity generation sector for Iskandar Malaysia by implementing a model to optimise the cost, utilise the usage of available renewable energy sources, and achieve carbon dioxide reduction targets. This Mixed Integer Linear Programming model was developed with the main objective of minimising the total cost of electricity generation, taking into consideration energy demand, reserve margin, electricity generation, peak and base generation, resource availability, and CO2 emission. Data for the year 2013 were forecasted until 2025 to illustrate the analysis for this study, and are represented via four scenarios. This optimal model is capable of balancing types of fuel and switching coal plants to natural gas power plants. It also enhances the use of renewable energy (RE) to meet CO2 emission targets. The model is further integrated with several other considerations related to energy systems, such as suitability of power plants as peak or base plants, RE resource availability, intermittency of solar power, losses during transmission, fuel selection for biomass, decision to retrofit existing coal power plant to NG power plant, and construction lead time of power plants. The results for this study determined that the optimal scenario is Scenario 3 (CS3). This research proves that Iskandar Malaysia can reduce CO2 emission by 2025 via utilisation of RE. This model is generic and can be applied to any case study, which would be useful for assisting government policy-making.  相似文献   
3.
Discharge of Green House Gases (GHGs) and the management of municipal solid waste (MSW) continue to be a major challenge particularly in growing economies. However, these are resources which can be converted to green energy. Landfill gas which is essentially methane (50–55%) and carbon dioxide (40–45%) (both GHGs) is released from MSW by biodegradation processes. The estimation of this methane and its economic and environmental benefits for environmental sustainability are the objectives of this study. Methane emission from MSW disposed of in landfills was estimated using Intergovernmental Panel on Climate Change (IPCC) methodology. From the study, based on 8,196,000 tonnes MSW generated in Peninsular Malaysia in 2010, anthropogenic methane emission of about 310,220 tonnes per year was estimated. This was estimated to generate 1.9 billion kWh of electricity year?1 worth over RM 570 million (US$190 million). In addition, this leads to carbon dioxide reduction of 6,514,620 tonnes year?1 equivalent to carbon credit of over RM 257 million (US$85 million). These results were also projected for 2015 and 2020 and the outcomes are promising. Therefore, the exploration of this resource, besides the economic benefits helps in reducing the dependence on the depleting fossil fuel and hence broadening the fuel base of the country.  相似文献   
4.
Volatile oil price and growing emphasis on environmental conservation have stimulated the development and utilisation of biomass as a vital source of renewable energy. In reducing the global dependency on fossil fuels, rice husk and rice straw which are the widely abundant agricultural wastes from the rice industry have a vital role to play. This paper reviews the key aspects of the utilisation of rice husk and rice straw as important sources of renewable energy. The paper provides some essential background information that includes the physical and chemical characteristics that dictates the quality of these rice biomasses. This paper also describes the various chemical and physical pretreatment techniques that can facilitate handling and transportation of rice straw and husk. Finally, the paper presents the state-of-the-art on thermo-chemical and bio-chemical technologies to convert rice husk and rice straw into energy.  相似文献   
5.
Emission of CO2, CH4, and NO x is among the main sources of greenhouse gases (GHGs) emitted through human activities such as fossil fuels combustion for power, heat and transportation, industrial processes, and land-use change. Low-carbon emission has become synonymous with GHG emission, which is often expressed in t CO2 eq. as derived from the major GHG. However, CO2 emission from fossil fuel constitutes just about 2/3 of GHGs. Low-carbon emission has received high publicity in recent years as a major reason for the potential mitigation of climate change. Achieving low GHG emission targets while decoupling the economic growth from high emissions, pollution, and resource use is desirable. This paper reviews the low-carbon emissions initiatives to develop resilient growth strategies to reduce GHG emissions in Asia and beyond. Four major initiatives, including the modelling of GHG emission and mitigation initiative; sustainable energy systems; sustainable waste management; and education and community outreach, are reviewed for mobilising the potential towards low-carbon emissions societies in Asia. Cooperation from major stakeholders, e.g. government, policy makers, financial institutions, private investors, industrial, commercial sector, residential, has been needed towards realising the goal.  相似文献   
6.
Wastewater treatment using microalgae is an eco-friendly process without secondary pollution. During the process, the wastewater produced is reused, which allows efficient nutrient recycling. This review provides constructive information to enable progress of competent technology for microalgae based productions in palm oil mill effluent (POME). The characteristics of POME that will be described in this paper would be a source of pollution in water if discharged directly. Since microalgae have great potential to be isolated and cultivated in POME, previous studies to improve POME based culture media are still limited. Microalgae are highly competent in diminishing CO2 emissions and reducing the organic components in POME. In conclusion, biological treatments by using microalgae discussed in this paper and the lipid production from microalgae biomass can be used as an alternative for energy production. The POME treatment with microalgae may meet the standards or limits before being discharged into the water body.  相似文献   
7.
The palm oil industry potentially can be environmentally sustainable through utilizing the vast availability of biomass residues from palm oil mills as renewable energy sources. This work addresses the optimal operation of a combined bioenergy and solar PV distributed energy generation system to meet the electricity and heat demands of an eco-community comprising a palm oil mill and its surrounding residential community. A multiperiod mixed-integer linear programming planning and scheduling model is formulated on an hourly basis that optimally selects the power generation mix from among available biomass, biogas, and solar energy resources with consideration for energy storage and load shifting. A multiscenario approach is employed that considers scenarios in the form of many possible weather conditions and various energy profiles under varying mill operation modes and residential electricity consumption. The proposed approach is demonstrated on a realistic case study for a palm oil mill in the Iskandar Malaysia economic development region. The computational results indicate that biomass-based resource is the preferred renewable energy to be implemented due to the high cost associated with solar PV. As well, load shifting and energy storage can be feasibly deployed for demand peak shaving particularly for solar PV systems.  相似文献   
8.
Clean Technologies and Environmental Policy - Hydrogen is a potential energy carrier for renewable energy as it has a clean emission when consumed. To implement hydrogen energy system in...  相似文献   
9.
Many countries have organised energy awards as an instrument to promote energy efficiency (EE), to contribute towards energy sustainability and to provide a mechanism for organisations to continuously search, benchmark and acknowledge initiatives and best practices in EE. To be effective, an award system must be tailored towards the needs, the level of readiness and the acceptance of a nation. This paper presents a framework for implementation of a national EE award in the context of Malaysia. The current energy scenario and energy issues relevant to Malaysia are first highlighted to establish the premise for organising a national energy award. Models and success stories of EE awards in other countries are discussed as possible benchmarks for implementation. The results of a survey conducted on various energy stakeholders in Malaysia confirmed the needs, readiness and acceptance for a national EE award. A framework for the implementation of a Malaysian EE award is proposed based on the survey conducted, and on various models of energy award implementation worldwide.  相似文献   
10.
Clean Technologies and Environmental Policy - The greenhouse gas (GHG) emission from the livestock sector is a major concern as GHG can contribute to climate change event such as global warming....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号