首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   1篇
能源动力   1篇
石油天然气   1篇
一般工业技术   2篇
  2016年   1篇
  2012年   1篇
  2006年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Context: The conventional liquid ophthalmic delivery systems exhibit short pre-corneal residence time and the relative impermeability to the cornea which leads to poor ocular bioavailability.

Objective: The aim of this study was to apply quality by design (QbD) for development of dexamethasone sodium phosphate (DSP) and tobramycin sulfate (TS)-loaded thermoresponsive ophthalmic in situ gel containing Poloxamer 407 and hydroxyl propyl methyl cellulose (HPMC) K4M for prolonging the pre-corneal residence time, ocular bioavability and decreases the frequency of administration of dosage form. The material attributes and the critical quality attributes (CQA) of the in situ gel were identified. Central composite design (CCD) was adopted to optimize the formulation.

Materials and methods: The ophthalmic in situ forming gels were prepared by cold method. Materials attributes were the amount of Poloxamer 407 and HPMC and CQA identified were Gel strength, mucoadhesive index, gelation temperature and % of drug release of both drug.

Results and discussion: Optimized batch (F*) containing 16.75% poloxamer 407 and 0.54% HPMC K4M were exhibited all results in acceptable limits. Compared with the marketed formulation, optimized in situ gel showed delayed Tmax, improved Cmax and AUC in rabbit aqueous humor, suggesting the sustained drug release and better corneal penetration and absorption.

Conclusion: According to the study, it could be concluded that DSP and TS would be successfully formulated as in situ gelling mucoadhesive system for the treatment of steroid responsive eye infections with the properties of sustained drug release, prolonged ocular retention and improved corneal penetration.  相似文献   

2.
Ultraviolet absorption spectroscopy, has an immense potential for characterization of aromatic hydrocarbons in distillate petroleum fractions. The second derivative ultraviolet spectroscopy has improved the understanding of complex aromatic structures, such as polynuclear aromatics, which are present in gas oil fractions. Normal and second derivative ultraviolet spectroscopy of gas oils and their separated fractions are discussed in detail and conclusions are drawn regarding mono-di-and polynuclear aromatics in various gas oils.  相似文献   
3.
We present the simultaneous measurement of three-dimensional deformations by electronic speckle pattern interferometry using five object beams and three colors. Each color, corresponding to an orthogonal direction of displacement, is separated through dichroic filtering before being recorded by a separate CCD camera. Carrier fringes are introduced by tilting the beam path in one arm of each of the three interferometers. The measured deformation modulates these carrier fringes and is extracted using the Fourier-transform method to achieve high displacement sensitivity. The field of view is on the order of a millimeter, making the system suitable for study of microstructural deformations. We compare experimental results with calculated values to validate out-of-plane and in-plane deformation measurements and demonstrate sensitivity on the order of 10 nm.  相似文献   
4.
The residence time distribution (RTD) for liquid phase in a trickle bed reactor (TBR) has been experimentally studied for air-water system. Experiments were performed in a 15.2 cm diameter column using commerical alumina extrudates with D/dp ratio equal to 75 to eliminate the radial flow differences. The range of liquid and gas flow rates covered was 3.76 < ReL < 9.3 and 0 < ReG < 2.92. The axial dispersion model was used to compute axial dispersion coefficient. The effect of liquid and gas flow rates on total liquid holdup and axial dispersion was investigated. The total liquid holdup has been correlated to liquid and gas flow rates.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号