首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
能源动力   1篇
轻工业   9篇
一般工业技术   3篇
冶金工业   3篇
  2020年   1篇
  2016年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2005年   2篇
  2002年   2篇
  2001年   2篇
  1998年   3篇
  1994年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Smith  Alexander F.  Liu  Xiaomeng  Woodard  Trevor L.  Fu  Tianda  Emrick  Todd  Jiménez  Juan M.  Lovley  Derek R.  Yao  Jun 《Nano Research》2020,13(5):1479-1484

Electronic sensors based on biomaterials can lead to novel green technologies that are low cost, renewable, and eco-friendly. Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from the microorganism Geobacter sulfurreducens. The nanowire sensor responds to a broad range of ammonia concentrations (10 to 106 ppb), which covers the range relevant for industrial, environmental, and biomedical applications. The sensor also demonstrates high selectivity to ammonia compared to moisture and other common gases found in human breath. These results provide a proof-of-concept demonstration for developing protein nanowire based gas sensors for applications in industry, agriculture, environmental monitoring, and healthcare.

  相似文献   
2.
A field-scale acetate amendment experiment was performed in a contaminated aquifer at Old Rifle, CO to stimulate in situ microbial reduction of U(VI) in groundwater. To evaluate the microorganisms responsible for microbial uranium reduction during the experiment, 13C-labeled acetate was introduced into well bores via bio-traps containing porous activated carbon beads (Bio-Sep). Incorporation of the 13C from labeled acetate into cellular DNA and phospholipid fatty acid (PLFA) biomarkers was analyzed in parallel with geochemical parameters. An enrichment of active sigma-proteobacteria was demonstrated in downgradient monitoring wells: Geobacter dominated in wells closer to the acetate injection gallery, while various sulfate reducers were prominent in different downgradient wells. These results were consistent with the geochemical evidence of Fe(III), U(VI), and SO(4)2- reduction. PLFA profiling of bio-traps suspended in the monitoring wells also showed the incorporation of 13C into bacterial cellular lipids. Community composition of downgradient monitoring wells based on quinone and PLFA profiling was in general agreement with the 13C-DNA result. The direct application of 13C label to biosystems, coupled with DNA and PLFA analysis,  相似文献   
3.
Previous studies have demonstrated that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U(VI) to the relatively insoluble U(IV) with organic compounds serving as the electron donor. Studies were conducted to determine whether electrodes might serve as an alternative electron donor for U(VI) reduction by a pure culture of Geobacter sulfurreducens and microorganisms in uranium-contaminated sediments. Electrodes poised at -500 mV (vs a Ag/AgCl reference) rapidly removed U(VI) from solution in the absence of cells. However, when the poise at the electrode was removed, all of the U(VI) returned to solution, demonstrating that the electrode did not reduce U(VI). If G. sulfurreducens was present on the electrode, U(VI) did not return to solution until the electrode was exposed to dissolved oxygen. This suggeststhat G. sulfurreducens on the electrode reduced U(VI) to U(IV) which was stably precipitated until reoxidized in the presence of oxygen. When an electrode was placed in uranium-contaminated subsurface sediments, U(VI) was removed and recovered from groundwater using poised electrodes. Electrodes emplaced in flow-through columns of uranium-contaminated sediments readily removed U(VI) from the groundwater, and 87% of the uranium that had been removed was recovered from the electrode surface after the electrode was pulled from the sediments. These results suggest that microorganisms can use electrons derived from electrodes to reduce U(VI) and that it may be possible to remove and recover uranium from contaminated groundwater with poised electrodes.  相似文献   
4.
The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.  相似文献   
5.
It is generally considered that sulphur reduction was one of the earliest forms of microbial respiration, because the known microorganisms that are most closely related to the last common ancestor of modern life are primarily anaerobic, sulphur-reducing hyperthermophiles. However, geochemical evidence indicates that Fe(III) is more likely than sulphur to have been the first external electron acceptor of global significance in microbial metabolism. Here we show that Archaea and Bacteria that are most closely related to the last common ancestor can reduce Fe(III) to Fe(II) and conserve energy to support growth from this respiration. Surprisingly, even Thermotoga maritima, previously considered to have only a fermentative metabolism, could grow as a respiratory organism when Fe(III) was provided as an electron acceptor. These results provide microbiological evidence that Fe(III) reduction could have been an important process on early Earth and suggest that microorganisms might contribute to Fe(III) reduction in modern hot biospheres. Furthermore, our discovery that hyperthermophiles that had previously been thought to require sulphur for cultivation can instead be grown without the production of toxic and corrosive sulphide, should aid biochemical investigations of these poorly understood organisms.  相似文献   
6.
Previous field studies on in situ bioremediation of uranium-contaminated groundwater in an aquifer in Rifle, Colorado identified two distinct phases following the addition of acetate to stimulate microbial respiration. In phase I, Geobacter species are the predominant organisms, Fe(III) is reduced, and microbial reduction of soluble U(VI) to insoluble U(IV) removes uranium from the groundwater. In phase II, Fe(III) is depleted, sulfate is reduced, and sulfate-reducing bacteria predominate. Long-term monitoring revealed an unexpected third phase during which U(VI) removal continues even after acetate additions are stopped. All three of these phases were successfully reproduced in flow-through sediment columns. When sediments from the third phase were heat sterilized, the capacity for U(VI) removal was lost. In the live sediments U(VI) removed from the groundwater was recovered as U(VI) in the sediments. This contrasts to the recovery of U(IV) in sediments resulting from the reduction of U(VI) to U(IV) during the Fe(III) reduction phase in acetate-amended sediments. Analysis of 16S rRNA gene sequences in the sediments in which U(VI) was being adsorbed indicated that members of the Firmicutes were the predominant organisms whereas no Firmicutes sequences were detected in background sediments which did not have the capacity to sorb U(VI), suggesting that the U(VI) adsorption might be due to the presence of these living organisms or at least their intact cell components. This unexpected enhanced adsorption of U(VI) onto sediments following the stimulation of microbial growth in the subsurface may potentially enhance the cost effectiveness of in situ uranium bioremediation.  相似文献   
7.
One of the limitations of power generation with microbial fuel cells is that the anode must typically be maintained under anaerobic conditions. When oxygen is present in the anode chamber microorganisms oxidize the fuel with the reduction of oxygen rather than electron transfer to the anode. A system in which fuel is provided from within a graphite anode and diffuses out to the outer surface of the anode was designed to overcome these limitations. A biofilm of Geobacter sulfurreducens strain KN400, pregrown on the surface of a graphite electrode in a traditional two-chambered system with an anaerobic anode chamber and acetate as an external fuel source, produced current just as well under aerobic conditions when acetate was provided via diffusion from an internal concentrated acetate solution. No acetate was detectable in the external medium. In contrast, aerobic systems in which acetate was provided in the external medium completely failed within 48 h. Internally fed anodes colonized by a strain of KN400 adapted to grow at marine salinities produced current in aerobic seawater as well as an anaerobic anode system. The ability to generate current with an anode under aerobic conditions increases the potential applications and design options for microbial fuel cells.  相似文献   
8.
Humic substances are a heterogeneous class of moderate molecular weight, yellow-colored biomolecules present in all soils, sediments, and natural waters. Although humic substances are generally resistant to microbial degradation under anaerobic conditions, some microorganisms in soils and sediments can use quinone moieties in humic substances as electron acceptors. Laboratory experiments have shown that humic substances can act as electron shuttles in the microbial reduction of ferric iron. Field studies of electron shuttling processes have been constrained by the lack of methods to characterize the oxidation state of quinone moieties in humic substances at natural concentrations. All humic substances have fluorescent properties, and fluorescence spectroscopy can indicate differences in precursor organic source of humic substances. Here we show that the quinone moieties responsible for electron transfer reactions contribute significantly to the fluorescence of humic substances. Further we use fluorescence spectroscopy to elucidate the oxidation state of quinone moieties in humic substances at natural concentrations found in sediment interstitial waters.  相似文献   
9.
It has previously been demonstrated that [14C]-labeled polycyclic aromatic hydrocarbons (PAHs) can be oxidized to 14CO2 in anoxic, PAH-contaminated, marine harbor sediments in which sulfate reduction is the terminal electron-accepting process. However, it has not previously been determined whether this degradation of [14C]-PAHs accurately reflects the degradation of the in situ pools of contaminant PAHs. In coal tar-contaminated sediments from Boston Harbor, [14C]-naphthalene was readily oxidized to 14CO2, but, after 95 d of incubation under anaerobic conditions, there was no significant decrease in the detectable pool of in situ naphthalene in these sediments. Therefore, to better evaluate the anaerobic biodegradation of the in situ PAH pools, the concentrations of these contaminants were monitored for ca. 1 year during which the sediments were incubated under conditions that mimicked those found in situ. There was loss of all of the PAHs that were monitored (2-5 ring congeners), including high molecular weight PAHs, such as benzo[a]pyrene, that have not previously been shown to be degraded under anaerobic conditions. There was no significant change in the PAH levels in the sediments amended with molybdate to inhibit sulfate-reducing bacteria or in sediments in which all microorganisms had been killed with glutaraldehyde. In some instances, over half of the detectable pools of in situ 2-3 ring PAHs were degraded. In general, the smaller PAHs were degraded more rapidly than the larger PAHs. A distinct exception in the Boston Harbor sediment was naphthalene which was degraded very slowly at a rate comparable to the larger PAHs. In a similar in situ-like study of fuel-contaminated sediments from Liepaja Harbor, Latvia, there was no decline in PAH levels in samples that were sulfate-depleted. However, when the Latvia sediments were supplemented with sufficient sodium sulfate or gypsum to elevate pore water levels of sulfate to approximately 14-25 mM there was a 90% decline in the naphthalene and a 60% decline in the 2-methylnaphthalene pool within 90 days. These studies demonstrate for the first time that degradation by anaerobic microorganisms can significantly impact the in situ pools of PAHs in petroleum-contaminated, anoxic, sulfate-reducing harbor sediments and suggest that the self-purification capacity of contaminated harbor sediments is greater than previously considered.  相似文献   
10.
Anaerobic oxidation of [1,2-14C]vinyl chloride and [1, 2-14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号