首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
化学工业   2篇
金属工艺   2篇
能源动力   1篇
石油天然气   3篇
一般工业技术   3篇
原子能技术   1篇
自动化技术   4篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2009年   2篇
  2008年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1978年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有16条查询结果,搜索用时 295 毫秒
1.
Ordered porosity metal materials belong to a relatively new class of porous materials named gasars. This paper presents a mathematical model of the complex physical phenomena in the production of gasars. Analyses for heat transfer, solidification kinetics and gas diffusion were coupled to describe the formation of unique gasar structure. Several criterial functions were introduced to provide significant quantitative information about the relationship between the operating technological parameters and the final structure. The computational outcomes of the numerical simulation were compared with the characteristics of real gasar ingots. The model was applied to determine the boundary conditions that would provide approximately constant physical conditions on the solidification front. The structure sensitiveness of gasars with respect to the different technological parameters is discussed.  相似文献   
2.
This paper is devoted to the study of an energy minimizing basis first introduced in Wan, Chan and Smith (2000) for algebraic multigrid methods. The basis will be first obtained in an explicit and compact form in terms of certain local and global operators. The basis functions are then proved to be locally harmonic functions on each coarse grid element. Using these new results, it is illustrated that this basis can be numerically obtained in an optimal fashion. In addition to the intended application for algebraic multigrid method, the energy minimizing basis may also be applied for numerical homogenization.  相似文献   
3.
4.
5.
6.
In this paper we construct Discontinuous Galerkin approximations of the Stokes problem where the velocity field is $H(\mathrm{div},\Omega )$ -conforming. This implies that the velocity solution is divergence-free in the whole domain. This property can be exploited to design a simple and effective preconditioner for the final linear system.  相似文献   
7.
In this paper we design and analyze a uniform preconditioner for a class of high-order Discontinuous Galerkin schemes. The preconditioner is based on a space splitting involving the high-order conforming subspace and results from the interpretation of the problem as a nearly-singular problem. We show that the proposed preconditioner exhibits spectral bounds that are uniform with respect to the discretization parameters, i.e., the mesh size, the polynomial degree and the penalization coefficient. The theoretical estimates obtained are supported by numerical tests.  相似文献   
8.
Mg2−xSnxNi (x = 0, 0.1, 0.3) alloys were synthesized by reactive ball milling under protective Ar atmosphere and liquid n-heptane. The microstructure and the morphology of the powders were determined by X-ray diffraction and scanning electron microscopy. The as-milled alloys consist of Mg2Ni nanocrystals with an average grain size in the range 3–7 nm, depending on the alloy composition. Sn containing phases were not detected even in the Sn-rich alloy. Obviously, Sn is dissolved in the Mg2Ni intermetallic compound. Gas phase sorption of hydrogen was not observed in the alloys containing Sn (Mg2−xSnxNi; x = 0.1, 0.3). It was suggested that Sn impedes the process of hydrogen molecules decomposition. The as-milled alloys absorbed reversibly hydrogen electrochemically. Mg2Ni alloy showed the highest discharge capacity of 300 mAh/g. The capacity of Mg1.9Sn0.1Ni and Mg1.7Sn0.3Ni was about 260 mAh/g. It was found that Sn improved the cycle life of the electrode.  相似文献   
9.
<正>Functionally graded materials,including their characterization,properties and production methods are a new rapidly developing field of materials science.The aims of this review are to systematize the basic production techniques for manufacturing functionally graded materials.Attention is paid to the principles for obtaining graded structure mainly in the metal based functionally graded materials.Several unpublished results obtained by the authors have been discussed briefly.Experimental methods and theoretical analysis for qualitative and quantitative estimation of graded properties have also been presented.The article can be useful for people who work in the field of functionally graded structures and materials,and who need a compact informative review of recent experimental and theoretical activity in this area.  相似文献   
10.
In the development of high fidelity transport solvers, optimization of the use of available computational resources and access to a tool for assessing quality of the solution are key to the success of large-scale nuclear systems’ simulation. In this regard, error control provides the analyst with a confidence level in the numerical solution and enables for optimization of resources through Adaptive Mesh Refinement (AMR).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号