首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
化学工业   4篇
无线电   2篇
一般工业技术   1篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Rigorous non-linear models of elasto-plastic contact deformation are time-consuming in numerical calculations for the distinct element method (DEM) and quite often unnecessary to represent the actual contact deformation of common particulate systems. In this work a simple linear elasto-plastic and adhesive contact model for spherical particles is proposed. Plastic deformation of contacts during loading and elastic unloading, accompanied by adhesion are considered, for which the pull-off force increases with plastic deformation. Considering the collision of a spherical cohesive body with a rigid flat target, the critical sticking velocity and coefficient of restitution in the proposed model are found to be very similar to those of Thornton and Ning’s model. Sensitivity analyses of the model parameters such as plastic, elastic, plastic-adhesive stiffnesses and pull-off force on work of compaction are carried out. It is found that by increasing the ratio of elastic to plastic stiffness, the plastic component of the total work increases and the elastic component decreases. By increasing the interface energy, the plastic work increases, but the elastic work does not change. The model can be used to efficiently represent the force-displacement of a wide range of particles, thus enabling fast numerical simulations of particle assemblies by the DEM.  相似文献   
2.
The mechanical compliance of vertically aligned carbon nanotube (VACNT) films renders them promising as interface materials that can accommodate thermal expansion mismatch. Here we study the relationship between the detailed morphology and elastic modulus of multi-walled VACNT films with thicknesses ranging from 98 to 1300 μm. A systematic analysis of scanning electron micrographs reveals variations in nanotube alignment and density among samples and within different regions of a given film. Nanoindentation of both top and bottom film surfaces using an atomic force microscope with spherical indenters with radii between 15 and 25 μm provides evidence of the modulus differences. The top surface is shown to have a higher modulus than the base, with out-of-plane modulus values of 1.0–2.8 MPa (top) and 0.2–1.4 MPa (base). The indentation data and microstructural information obtained from electron microscopy are interpreted together using an open cell foam model to account for differences in nanotube alignment and density, which are generally lower at the base and yield predictions that are consistent with the modulus data trends. This work shows that microstructure analysis complements property measurements to improve our understanding of nanostructured materials.  相似文献   
3.
Temperature drops at the interfaces between thermoelectric materials and the heat source and sink reduce the overall efficiency of thermoelectric systems. Nanostructured interfaces based on vertically aligned carbon nanotubes (CNTs) promise the combination of mechanical compliance and high thermal conductance required for thermoelectric modules, which are subjected to severe thermomechanical stresses. This work discusses the property require- ments for thermoelectric interface materials, reviews relevant data available in the literature for CNT films, and characterizes the thermal properties of vertically aligned multiwalled CNTs grown on a candidate thermoelectric material. Nanosecond thermoreflectance thermometry provides thermal property data for 1.5-μm-thick CNT films on SiGe. The thermal interface resistances between the CNT film and surrounding materials are the dominant barriers to thermal transport, ranging from 1.4 m2 K MW−1 to 4.3 m2 K MW−1. The volumetric heat capacity of the CNT film is estimated to be 87 kJ m−3 K−1, which corresponds to a volumetric fill fraction of 9%. The effect of 100 thermal cycles from 30°C to 200°C is also studied. These data provide the groundwork for future studies of thermoelectric materials in contact with CNT films serving as both a thermal and electrical interface.  相似文献   
4.
The synthesis and application of colloidal metal nanoparticles as catalyst components are emerging research areas with potential to revolutionize the field of heterogeneous catalysis due to the ability to achieve simultaneous size, shape, and composition control and thus defined active sites. This contribution evaluates the role of the synthetic strategy on the catalytic properties of polymer stabilized Pt nanoparticles supported on silica and titania. Temperature-programmed oxidation (TPO) profiles confirmed that triple washings in ethanol/hexanes cycles removed the majority of organic species. Ethylene hydrogenation demonstrated that the turnover frequencies match the expected literature values at near ambient conditions. Finally, catalytic methanol decomposition and methanol oxidation showed differences with the support, which inferred that the Pt-support interface is free from organic impurities that would block the metal-support interactions. Moreover, ongoing studies on photocatalytic decomposition with titania showed enhancements with the addition of Pt and this result again supports the existence of the Pt-support interface. Together, these methodologies provide both an array of techniques to probe the role of the organic capping layers and a comprehensive demonstration that these systems are relatively free from organic capping interference with the optimized synthesis and purification protocols.  相似文献   
5.
6.
As traditional sources of energy become depleted, significant research interest has gone into conversion of biomass into renewable fuels. Biomass-derived synthesis gas typically contains concentrations ranging from ~30 to 600 ppm H2S. H2S is a catalyst poison which adversely impacts downstream processing of hydrogen for gas-to-liquid plants and the deactivation of water–gas shift catalysts by sulfur is typical. Novel catalysts are needed to remain active in the presence of sulfur in order to boost efficiency and mitigate costs. Previous studies have shown molybdenum to be active in concentrations of sulfur >300 ppm. Cobalt has been shown to be active as a spinel in concentrations of sulfur <240 ppm. Ceria has received attention as a catalyst due to its oxygen donating properties. In this study, mixed oxide catalysts were synthesized via Pechini’s method into various blends of metal oxide solutions. Activity testing at low steam-to-carbon ratios (1:1) produced near equilibrium conversions at a GHSV of 6,300 h?1 and over a temperature range of 350–400 °C for a Ce–Co mixed oxide even after an 800 ppm sulfur treatment. The addition of molybdenum to the Ce–Co base had little effect on sulfur tolerance, but it did lead to a reduction in selectivity for methanation. Specific surface areas generally increased following the sulfur treatments and X-ray diffraction patterns confirmed that bulk sulfiding did not occur.  相似文献   
7.
The dynamic searchable encryption schemes generate search tokens for the encrypted data on a cloud server periodically or on a demand. With such search tokens, a user can query the encrypted data whiles preserving the data's privacy; ie, the cloud server can retrieve the query results to the user but do not know the content of the encrypted data. A framework DSSE with Forward Privacy (dynamic symmetric searchable encryption [DSSE] with forward privacy), which consists of Internet of Things and Cloud storage, with the attributes of the searchable encryption and the privacy preserving are proposed. Compared with the known DSSE schemes, our approach supports the multiusers query. Furthermore, our approach successfully patched most of the security flaws related to the sensitive information's leakage in the DSSE schemes. Both security analysis and simulations show that our approach outperforms other DSSE schemes with respect to both effectiveness and efficiency.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号