首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
机械仪表   4篇
无线电   37篇
一般工业技术   2篇
冶金工业   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1995年   1篇
排序方式: 共有44条查询结果,搜索用时 562 毫秒
1.
An original technology of zinc diffusion into InP via a narrow gap is described, which allows reproducible formation of p–n junctions with preset depth of doping and retained surface morphology of the doped layers. Using the proposed method, desired charge carrier distribution profiles in Zn-doped InP layers were obtained. It has been experimentally confirmed that the method of cross-sectional scanning electron microscopy allows to precision measure of the zinc diffusion depth.  相似文献   
2.
Electron traps in GaAs grown by MBE at temperatures of 200–300°C (LT-GaAs) were studied. Capacitance deep level transient spectroscopy (DLTS) was used to study the Schottky barrier on n-GaAs, whose space-charge region contained a built-in LT-GaAs layer ∼0.1 μm thick. The size of arsenic clusters formed in LT-GaAs on annealing at 580°C depended on the growth temperature. Two new types of electron traps were found in LT-GaAs layers grown at 200°C and containing As clusters 6–8 nm in diameter. The activation energy of thermal electron emission from these traps was 0.47 and 0.59 eV, and their concentration was ∼1017 cm−3, which is comparable with the concentration of As clusters determined by transmission electron microscopy. In LT-GaAs samples that were grown at 300°C and contained no arsenic clusters, the activation energy of traps was 0.61 eV. The interrelation between these electron levels and the system of As clusters and point defects in LT-GaAs is discussed. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 4, 2004, pp. 401–406. Original Russian Text Copyright ? 2004 by Brunkov, Gutkin, Moiseenko, Musikhin, Chaldyshev, Cherkashin, Konnikov, Preobrazhenskii, Putyato, Semyagin.  相似文献   
3.
The effect of dopant concentration and growth-surface crystallographic orientation on the incorporation of Si into Ga and As sublattices was investigated during GaAs molecular-beam epitaxy. The epitaxial layers (epilayers) were grown on GaAs substrates with (100), 2°(100), 4°(100), and 8°(100) orientations at a temperature of 520°C and with (111)A, 2°(111)A, 2°(111)A, 5°(111)A, 6°(111)A, and 8°(111)A (where A = Ga) orientations at a temperature of 480°C. The Sidopant concentration was varied within 1017–1019 cm?3. Through electrical and photoluminescent methods of investigation, the Si impurity was found to occur at the sites of both GaAs-layer sublattices not only as simple donors and acceptors (SiGa and SiAs), but also as SiGa-SiAs, SiGa-VGa, and SiAs-VAs complexes. The concentration of Si impurity in various forms depends on the doping level of the layers and on the growth-surface orientation. Amphoteric properties of Si manifest themselves more prominently on the (111)A face than on the (100) one. It is shown that impurity defects form at the stage of layer crystallization and depend on the growth-surface structure.  相似文献   
4.
The interaction of the GaSb(001) surface with fluxes of As2, As4, and Sb4 molecules is studied using reflection high-energy electron diffraction. It is shown that As2 molecules interact with a GaSb surface predominantly by an exchange mechanism, and As4 molecules by the vacancy mechanism. It is established that for the reproducible generation of In-Sb heterointerfaces in InAs/GaSb superlattices, one needs to use a flux of As4 molecules rather than As2 molecules.  相似文献   
5.
Electron-microscopy studies of GaAs structures grown by the method of molecular-beam epitaxy and containing arrays of semiconductor InAs quantum dots and metallic As quantum dots are performed. An array of InAs quantum dots is formed using the Stranski-Krastanow mechanism and consists of five layers of vertically conjugated quantum dots divided by a 5-nm-thick GaAs spacer layer. The array of As quantum dots is formed in an As-enriched GaAs layer grown at a low temperature above an array of InAs quantum dots using postgrowth annealing at temperatures of 400–600°C for 15 min. It is found that, during the course of structure growth near the InAs quantum dots, misfit defects are formed; these defects are represented by 60° or edge dislocations located in the heterointerface plane of the semiconductor quantum dots and penetrating to the surface through a layer of “low-temperature” GaAs. The presence of such structural defects leads to the formation of As quantum dots in the vicinity of the middle of the InAs conjugated quantum dots beyond the layer of “low-temperature” GaAs.  相似文献   
6.
X-ray spectral microanalysis, optical transmission measurements at near-infrared wavelengths, and x-ray diffractometry are used to show that the isovalent indium doping of gallium arsenide during molecular-beam epitaxy at low temperatures leads to an increase in the concentration of excess arsenic trapped in the growing layer. Fiz. Tekh. Poluprovodn. 32, 778–781 (July 1998)  相似文献   
7.
InAs-GaAs superlattices grown by molecular-beam epitaxy at low temperature are investigated by high-resolution x-ray diffractometry. It is shown that despite a very high density of point defects due to the presence of excess arsenic, the as-grown superlattice has high crystal perfection. An analysis of the changes in the x-ray diffraction curves shows that high-temperature annealing, which is accompanied by the formation of As clusters and diffusion of indium, produces significant structural transformations in the GaAs matrix and at the interfaces. Fiz. Tekh. Poluprovodn. 32, 24–31 (January 1998)  相似文献   
8.
Electron traps in low-temperature-grown ~40-nm-thick GaAs layers containing nanometer As-Sb clusters have been studied using deep-level transient spectroscopy. Measurements at various bias voltages and small-amplitude filling pulses have allowed the identification of two groups (T1 and T2) of traps with substantially different thermal electron emission rates. It is shown that the density of traps T2 (with an activation energy of 0.56 ± 0.04 eV and electron capture cross section of 2 × 10?13?10?12cm2) is ~2 × 1012cm?2, while the density of traps T1 (0.44 ± 0.02 eV and 2 × 10?14?10?13 cm2, respectively) is ten times lower. It is assumed that, according to the existence of the two cluster groups observed in the layers under study, traps T2 are associated with clusters 4–7 nm in diameter and traps T1, with clusters up to ~20 nm in diameter.  相似文献   
9.
Evidence given by electron microscopy of dislocation relaxation of stresses near InAs quantum dots buried into GaAs is presented. It was found that dislocation defects not emerging to the film surface are formed in some buried quantum dots. This suggests that stress relaxation occurs in the buried state of the quantum dot, rather than at the stage of the formation and growth of an InAs island on the GaAs surface. Models of internal dislocation relaxation of buried quantum dots are presented.  相似文献   
10.
GaAs films on Si substrates miscut from the (001) plane by 6° in the [110] direction are grown by molecular beam epitaxy (MBE). GaAs films are grown both on the Si surface terminated by arsenic atoms and on thin pseudomorphic GaP/Si layers. The condition of formation of the As sublayer and the first monolayer of GaP on the Si surface is defined as the GaAs film orientation (001) or \((00\bar 1)\) . The processes of Si surface preparation and formation of the As sublayer and GaAs and GaP epitaxial layers are monitored by means of high-energy electron diffraction reflection (RHEED). The grown structures are investigated by methods of X-ray diffraction, atomic force microscopy (ATM), high-resolution transmission electron microscopy (HRTEM), and low-temperature luminescences. It is shown that the epitaxial film orientation affects both the surface morphology and its crystalline properties. Intense photoluminescence is obtained from the In0.17Ga0.83As quantum well structure grown on the GaAs/Si buffer layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号