首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学工业   1篇
无线电   2篇
一般工业技术   3篇
自动化技术   1篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Journal of Superconductivity and Novel Magnetism - This study leads to the investigation of the non-equilibrium electron relaxation in ferromagnetic metals. Here we consider the relaxation of...  相似文献   
2.
Outstanding thermal transport properties of carbon nanotubes (CNTs) qualify them as possible candidates to be used as thermal management units in electronic devices. However, significant variations in the thermal conductivity (κ) measurements of individual CNTs restrict their utilizations for this purpose. In order to address the possible sources of this large deviation and to propose a route to solve this discrepancy, we systematically investigate the effects of varying concentrations of randomly distributed multiple defects (single and double vacancies, Stone-Wales defects) on the phonon transport properties of armchair and zigzag CNTs with lengths ranging between a few hundred nanometers to several micrometers, using both nonequilibrium molecular dynamics and atomistic Green's function methods. Our results show that, for both armchair and zigzag CNTs, κ converges nearly to the same values with different types of defects, at all lengths considered in this study. On the basis of the detailed mean free path analysis, this behavior is explained with the fact that intermediate and high frequency phonons are filtered out by defect scattering, while low frequency phonons are transmitted quasi-ballistically even for several micrometer long CNTs. Furthermore, an analysis of variances in κ for different defect concentrations indicates that defect scattering at low defect concentrations could be the source of large experimental variances, and by taking advantage of the possibility to create a controlled concentration of defects by electron or ion irradiation, it is possible to standardize κ with minimizing the variance. Our results imply the possibility of phonon engineering in nanostructured graphene based materials by controlling the defect concentration.  相似文献   
3.
An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO2, GeO2, Al2O3, Si3N4, and Ge3N4. Their important polymorphs are considered which are for SiO2: α-quartz, α- and β-cristobalite and stishovite, for GeO2: α-quartz, and rutile, for Al2O3: α-phase, for Si3N4 and Ge3N4: α- and β-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving ab initio pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO2. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si3N4 and Ge3N4.  相似文献   
4.
Diabetic retinopathy (DR) is one of the most important complications of diabetes mellitus, which causes serious damages in the retina, consequently visual loss and sometimes blindness if necessary medical treatment is not applied on time. One of the difficulties in this illness is that the patient with diabetes mellitus requires a continuous screening for early detection. So far, numerous methods have been proposed by researchers to automate the detection process of DR in retinal fundus images. In this paper, we developed an alternative simple approach to detect DR. This method was built on the inverse segmentation method, which we suggested before to detect Age Related Macular Degeneration (ARMDs). Background image approach along with inverse segmentation is employed to measure and follow up the degenerations in retinal fundus images. Direct segmentation techniques generate unsatisfactory results in some cases. This is because of the fact that the texture of unhealthy areas such as DR is not homogenous. The inverse method is proposed to exploit the homogeneity of healthy areas rather than dealing with varying structure of unhealthy areas for segmenting bright lesions (hard exudates and cotton wool spots). On the other hand, the background image, dividing the retinal image into high and low intensity areas, is exploited in segmentation of hard exudates and cotton wool spots, and microaneurysms (MAs) and hemorrhages (HEMs), separately. Therefore, a complete segmentation system is developed for segmenting DR, including hard exudates, cotton wool spots, MAs, and HEMs. This application is able to measure total changes across the whole retinal image. Hence, retinal images that belong to the same patients are examined in order to monitor the trend of the illness. To make a comparison with other methods, a Na?ve Bayes method is applied for segmentation of DR. The performance of the system, tested on different data sets including various qualities of retinal fundus images, is over 95% in detection of the optic disc (OD), and 90% in segmentation of the DR.  相似文献   
5.
In this study, we present an investigation on the growth of thin Mo2C crystals via chemical vapor deposition using CH4. Optical microscopy (OM), scanning electron microscopy (SEM), atomic force microscopy(AFM), and Raman spectroscopy studies show that the morphology and the thickness of Mo2C crystals are strongly affected by the impurities in the system, the thickness of the copper substrate, and the graphene presence on Cu surface prior to Mo2C formation. Our studies show that during the CVD process, orthorhombic Mo2C crystals grow along the [100] direction on two different regions: directly on Cu surface or on graphene covered regions. Mo2C crystals that form on graphene are found to be thinner and less defective compared to the ones formed on the Cu surface. This is attributed to graphene acting as an additional diffusion barrier for Mo atoms diffusing through the copper. In addition to the graphene beneath the Mo2C crystal, Raman studies indicate that graphene may grow also on top of the Mo2C crystal, forming a graphene/Mo2C/graphene sandwich structure which may offer interesting properties for electronic applications.  相似文献   
6.
7.
The recently reported inverse silver oxide phase of SiO2 possesses a high dielectric constant as well as lattice constant compatibility to Si. We explore the closely related oxides, GeO2, SnO2 with the same inverse silver oxide structure using ab initio density functional theory within the local density approximation (LDA). According to the phonon dispersion curves, both these structures are computed to be unstable. On the other hand, their alloys Si0.5Ge0.5O2, Si0.5Sn0.5O2, and Ge0.5Sn0.5O2 are stable with higher dielectric constants than that of SiO2 in the same phase. Their first-principles elastic constants, electronic band structures and phonon dispersion curves have been obtained with high precision.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号