首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
化学工业   1篇
金属工艺   6篇
能源动力   1篇
无线电   2篇
一般工业技术   3篇
自动化技术   1篇
  2023年   2篇
  2018年   2篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 62 毫秒
1.
The number of mobile devices accessing wireless networks is skyrocketing due to the rapid advancement of sensors and wireless communication technology. In the upcoming years, it is anticipated that mobile data traffic would rise even more. The development of a new cellular network paradigm is being driven by the Internet of Things, smart homes, and more sophisticated applications with greater data rates and latency requirements. Resources are being used up quickly due to the steady growth of smartphone devices and multimedia apps. Computation offloading to either several distant clouds or close mobile devices has consistently improved the performance of mobile devices. The computation latency can also be decreased by offloading computing duties to edge servers with a specific level of computing power. Device-to-device (D2D) collaboration can assist in processing small-scale activities that are time-sensitive in order to further reduce task delays. The task offloading performance is drastically reduced due to the variation of different performance capabilities of edge nodes. Therefore, this paper addressed this problem and proposed a new method for D2D communication. In this method, the time delay is reduced by enabling the edge nodes to exchange data samples. Simulation results show that the proposed algorithm has better performance than traditional algorithm.  相似文献   
2.
The change in the mechanism of stress corrosion cracking with test temperature for Type 304, 310 and 316 austenitic stainless steels was investigated in boiling saturated magnesium chloride solutions using a constant load method. Three parameters (time to failure; tf, steady-state elongation rate; lss and transition time at which a linear increase in elongation starts to deviate; tss) obtained from the corrosion elongation curve showed clearly three regions; stress-dominated, stress corrosion cracking-dominated and corrosion-dominated regions. In the stress corrosion cracking-dominated region the fracture mode of type 304 and 316 steels was transgranular at higher temperatures of 416 and 428 K, respectively, but was intergranular at a lower temperature of 408 K. Type 310 steel showed no intergranular fracture but only transgranular fracture. The relationship between log lss and log tf for three steels became good straight lines irrespective of applied stress. The slope depended upon fracture mode; −2 for transgranular mode and −1 for intergranular mode. On the basis of the results obtained, it was estimated that intergranular cracking was resulted from hydrogen embrittlement due to strain-induced formation of martensite along the grain boundaries, while transgranular cracking took place by propagating cracks nucleated at slip steps by dissolution.  相似文献   
3.
Stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of sensitized stainless steels of types 304, 310 and 316 were investigated as a function of applied stress at different test temperatures in boiling saturated magnesium chloride (MgCl2) solutions under a constant applied stress condition. The stress dependence of fracture appearance and three parameters of time to failure (tf), steady-state elongation rate (lss) and transition time to time to failure ratio suggests that types 304 and 310 suffered SCC, while type 316 suffered only HE. It was also found that the applied stress dependence of three parameters for the sensitized types 304 and 310 was almost similar to that of the solution-annealed stainless steels, whereas that of type 316 showed a clear difference between sensitized and solution-annealed specimens. The relationships between the logarithms of the time to failure and the steady-state elongation rate became a straight line for all stainless steels. However, its slope depended upon the fracture mode: −2.0 for SCC and −1.5 for HE. This showed that the steady-state elongation rate was a good parameter for predicting the time to failure for the stainless steels in the MgCl2 solutions. The results obtained were explained in terms of martensite transformation, hydrogen entry site, and sensitization.  相似文献   
4.
Polydopamine-coated FeCo nanocubes (PDFCs) were successfully synthesized and tested under microwave irradiation of 2.45 GHz frequency and 0.86 W/cm2 power. These particles were found to be non-toxic in the absence of irradiation, but gained significant toxicity upon irradiation. Interestingly, no increase in relative heating rate was observed when the PDFCs were irradiated in solution, eliminating nanoparticle (NP)-induced thermal ablation as the source of toxicity. Based on these studies, we propose that microwave-induced redox processes generate the observed toxicity.  相似文献   
5.
The effect of thermal annealing on shot-peened Type 304 stainless steel has been examined using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The objective was to evaluate the potential for surface property control by grain boundary engineering. The near surface microstructure of shot-peened material showed a gradual change of the grain boundary character distribution with depth. Twin (Σ3) and higher order twin grain boundaries (Σ9, Σ27) identified closer to the shot-peened surface had significant deviations from their optimum misorientation. The subsequent application of annealing treatments caused depth-dependent changes of the near surface microstructure, with variations in grain size, low Σ CSL grain boundary populations and their deviation from optimum misorientation. Microstructure developments were dependent on the applied heat treatment, with the near surface microstructures showing similarities to microstructures obtained through bulk thermo-mechanical processing. Shot peening, followed by annealing, may therefore be used to control the near surface microstructure of components.  相似文献   
6.
Stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of the sensitized stainless steels of type 304, 310 and 316 were investigated as a function of test temperature in boiling saturated magnesium chloride (MgCl2) solutions under a constant applied stress condition. The test temperature dependence of fracture appearance and three parameters of time to failure (tf), steady-state elongation rate (lss) and transition time to time to failure ratio (tss/tf) suggests that type 304 suffered SCC and HE, while type 316 suffered only HE and type 310 SCC. It was also found that the test temperature dependence of three parameters for the sensitized type 304 and 310 was almost similar to that of the solution annealed stainless steels, whereas that of type 316 showed a clear difference between sensitized and solution annealed specimens. The relationships between the logarithms of the time to failure and the steady-state elongation rate became a straight line for all stainless steels. However, its slope depended upon the fracture mode; −2.0 for SCC and −1.5 for HE. This showed that the steady-state elongation rate was the parameter for predicting the time to failure for the stainless steels in the MgCl2 solutions. The results obtained were explained in terms of martensite transformation, hydrogen entry site, sensitization, and so on.  相似文献   
7.
This paper presents the results of an optimization study using a comprehensive three-dimensional, multi-phase, non-isothermal model of a PEM fuel cell that incorporates the significant physical processes and the key parameters affecting fuel cell performance. The model accounts for both the gas and liquid phase in the same computational domain and, thus, allows for the implementation of phase change inside the gas diffusion layers. The model includes the transport of gaseous species, liquid water, protons, energy and water dissolved in the ion conducting polymer. Water is assumed to be exchanged among three phases; liquid, vapor and dissolved, and equilibrium among these phases is assumed. The model features an algorithm that allows a more realistic representation of the local activation overpotentials, which leads to improved prediction of the local current density distribution. This model also takes into account convection and diffusion of different species in the channels as well as in the porous gas diffusion layer, heat transfer in the solids as well as in the gases and electrochemical reactions. The results showed that the present multi-phase model is capable of identifying important parameters for the wetting behavior of the gas diffusion layers and can be used to identify conditions that might lead to the onset of pore plugging, which has a detrimental effect on the fuel cell performance. This model is used to study the effects of several operating, design and material parameters on fuel cell performance. Detailed analyses of the fuel cell performance under various operating conditions have been conducted and examined.  相似文献   
8.
We have already proposed a mechanism for intergranular hydrogen embrittlement (IG-HE) for solution annealed austenitic stainless steels (types 304, 316 and 310) in HCl solutions and in boiling saturated magnesium chloride solutions. The proposed IG-HE mechanism was based on martensite transformation, hydrogen-enhanced local plasticity (HELP), grain boundary sliding (GBS). Recently, it was reported that the fracture susceptibility and fracture mode for sensitized steels in boiling saturated magnesium chloride solution under an open-circuit condition were significantly different from those observed for solution annealed steels. In the present paper, the hydrogen embrittlement behavior of sensitized types 304, 316 and 310 in boiling saturated magnesium chloride solutions was explained in more details in terms of an inhibiting effect of chloride ions, martensite transformation, Cr depletion, HELP, the degree of corrosiveness through the comparison with those for the solution annealed steels. Furthermore, a transgranular HE (TG-HE) cracking mode that was not observed for the solution annealed steels was discussed as well as IG-HE. Then a TG-HE mechanism for sensitized austenitic stainless steels was proposed, while the IG-HE mechanism for solution annealed austenitic stainless steels which was discussed in details was applied to IG-HE of sensitized austenitic stainless steels. It was also pointed out that the occurrence of both TG-HE and IG-HE was explained with an identical concept.  相似文献   
9.
Web opinion feeds have become one of the most popular information sources users consult before buying products or contracting services. Negative opinions about a product can have a high impact in its sales figures. As a consequence, companies are more and more concerned about how to integrate opinion data in their business intelligence models so that they can predict sales figures or define new strategic goals. After analysing the requirements of this new application, this paper proposes a multidimensional data model to integrate sentiment data extracted from opinion posts in a traditional corporate data warehouse. Then, a new sentiment data extraction method that applies semantic annotation as a means to facilitate the integration of both types of data is presented. In this method, Wikipedia is used as the main knowledge resource, together with some well-known lexicons of opinion words and other corporate data and metadata stores describing the company products like, for example, technical specifications and user manuals. The resulting information system allows users to perform new analysis tasks by using the traditional OLAP-based data warehouse operators. We have developed a case study over a set of real opinions about digital devices which are offered by a wholesale dealer. Over this case study, the quality of the extracted sentiment data is evaluated, and some query examples that illustrate the potential uses of the integrated model are provided.  相似文献   
10.
Periodic mesoporous organosilica nanoparticles emerge as promising vectors for nanomedicine applications. Their properties are very different from those of well‐known mesoporous silica nanoparticles as there is no silica source for their synthesis. So far, they have only been synthesized from small bis‐silylated organic precursors. However, no studies employing large stimuli‐responsive precursors have been reported on such hybrid systems yet. Here, the synthesis of porphyrin‐based organosilica nanoparticles from a large octasilylated metalated porphyrin precursor is described for applications in near‐infrared two‐photon‐triggered spatiotemporal theranostics. The nanoparticles display unique interconnected large cavities of 10–80 nm. The framework of the nanoparticles is constituted with J‐aggregates of porphyrins, which endows them with two‐photon sensitivity. The nanoparticle efficiency for intracellular tracking is first demonstrated by the in vitro near‐infrared imaging of breast cancer cells. After functionalization of the nanoparticles with aminopropyltriethoxysilane, two‐photon‐excited photodynamic therapy in zebrafish is successfully achieved. Two‐photon photochemical internalization in cancer cells of the nanoparticles loaded with siRNA is also performed for the first time. Furthermore, siRNA targeting green fluorescent protein complexed with the nanoparticles is delivered in vivo in zebrafish embryos, which demonstrates the versatility of the nanovectors for biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号