首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
金属工艺   1篇
冶金工业   2篇
  2023年   2篇
  2022年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
 齿轮钢广泛应用于汽车、机械等传动系统,易切削化是提高齿轮加工效率、降低制造成本的主要途径之一。提高钢中硫元素含量是改善齿轮钢切削性能的有效方式,然而过多的硫元素在轧制时会形成条带状MnS,增大钢的各向异性,因此需要对硫化物进行改制处理。分别采用Ca处理和Mg处理两种方式对20MnCr5齿轮钢进行硫化物改质,通过对力学性能、组织形态、夹杂物分布以及切削性能等表征,对比分析不同改制方式对材料的影响。结果表明,Ca处理和Mg处理后试验钢的强度和塑性保持一致,而Mg处理试样的晶粒尺寸较小,因而韧性较高。Ca处理试验钢中MnS夹杂物数量较多,长条状夹杂物比例相对较高;而采用Mg处理可以有效降低钢中夹杂物的数量,夹杂物平均尺寸有所增大,同时小长径比夹杂物数量增多,但是复合氧化物型夹杂物的数量也有所增加。在240~280 m/min条件下进行了干切削试验,结果表明两种试验钢均出现前刀面磨损、后刀面磨损和边界磨损,其中Ca处理试样的刀具磨损较为严重,同时在较高切削速度下出现了积屑瘤和崩角现象,而Mg处理试样则具有更长的刀具使用寿命,对切削速度的敏感性也较低。分析可知,Mg处理后钢中存在较多的大尺寸球状硫化物夹杂物,提高了应力集中效应,更有利于改善切削性能,因而改制效果更好。  相似文献   
2.
以18CrNiMo7-6齿轮钢为研究用基础钢,在传统真空脱气冶炼方式基础上,采用Nb微合金化和电渣重熔冶炼相结合获得一种对比试验钢,通过旋转弯曲疲劳试验表征了两种试验钢的疲劳性能,并利用显微组织、硬度分布、疲劳断口表征以及夹杂物分析等手段,探究了两种试验齿轮钢疲劳性能的影响因素。结果表明,采用电渣重熔方法冶炼并Nb微合金化的试验钢的疲劳极限较基础钢提高90 MPa,且相同载荷下寿命显著提高,渗碳层晶粒度由基础钢的7.5级细化至9级,而残留奥氏体含量的增加导致其表面硬度降低。通过Aspex夹杂物表征发现试验钢中夹杂物数量较基础钢大幅度降低,且硬质氧化物夹杂较少,与断口表征结果相一致。综合分析可知,晶粒细化和非金属夹杂物水平下降是提升试验钢疲劳性能的主要因素。  相似文献   
3.
针对低成本超高强度钢的开发问题,在国外材料基础上设计开发了低成本Ti微合金化超高强度钢,弥补了国内相关产品空白;同时通过力学测试、微观组织表征、析出相分析等方法揭示了Ti微合金化对试验钢的组织性能影响规律及强韧化机制,为低成本超高强度钢板新材料的工业化应用提供数据积累与理论支撑。试验结果表明:Ti微合金化试验钢与基础钢相比,屈服强度相当,断面收缩率从33%提升至44%,低温冲击韧性也从22.6 J提升至26.7 J,可见Ti微合金化试验钢具有更好的塑韧性匹配;其主要原因是Ti微合金化试验钢中有较多的MC型和M3C型碳化物析出,使得基体中固溶的C质量分数从0.287%降至0.247%,同时Ti微合金化使得试验钢的原奥氏体晶粒由9.5级细化至11.0级,有效晶粒尺寸从1.8μm降低至1.3μm。计算结果显示:Ti微合金化试验钢碳当量较基础钢明显降低,因此焊接性能更好;Ti微合金化试验钢通过降低固溶强化、提高位错强化和细晶强化以及析出强化,实现了屈服强度的提升,并保障了韧性和工艺性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号