首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
电工技术   1篇
化学工业   2篇
金属工艺   6篇
一般工业技术   2篇
冶金工业   10篇
  2014年   2篇
  2013年   2篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2001年   1篇
  2000年   1篇
  1987年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
2.

Anin situ morphological study of the oxidation of electron transparent specimens of aluminum and aluminum alloys containing zinc and magnesium has been carried out in the temperature range 400 to 520°C using the hot stage of a 1 MeV transmission electron microscope. The structure and morphology of the crystalline oxide produced in each alloy has been carefully examined by selected area electron diffraction and stereomicroscopy. In pure aluminum, oxidation takes place after a temperature dependent induction period, by the nucleation of crystalline γ-Al2O3 at the amorphous oxide/metal interface. This process is delayed by additions of zinc which modify the structure of the oxide. In alloys containing magnesium, oxidation takes place by the rapid nucleation and growth of MgAl2O4 or MgO, with a secondary form of magnesia developing from the reduction of the amorphous γ-Al2O3 surface layer.

  相似文献   
3.
It has been found that a high purity Al-6%Zn-3%Mg becomes embrittled if pre-exposed to moist gases prior to tensile testing. The degree of embrittlement increases with the time of preexposure and with the temperature and relative humidity of the pre-exposure environment. The alloy is most sensitive to embrittlement when solution treated at 475°C but this sensitivity can be reduced considerably if the surface film formed at 475°C is removed by electropolishing. The embrittlement is not strain-rate sensitive and the ductility of the pre-exposed alloy cannot be recovered by storing unstressed in dry air or in vacuo. However, the ductility of embrittled specimens can be fully restored if tensile testing is carried out under vacuum. If 1.7% copper or 0.14% chromium are added to the high purity alloy the rate of embrittlement is reduced and is even more reduced in the commercial 7075 alloy. Also, both the chromium containing alloy and the commercial alloy recover their ductilities during storage in laboratory air at room temperature—the rate of recovery being much higher than the rate of embrittlement.It is proposed that embrittlement is due to the deep penetration of an agent such as atomic hydrogen which reduces the grain boundary cohesion. It is also proposed that a similar effect must occur during the intergranular stress corrosion failure of AlZnMg alloys.  相似文献   
4.
The effect of high-temperature heat treatment combined with different cleaning and pre-treatment practices on filiform corrosion resistance has been investigated for aluminium alloys AA3005 and AA5754. High-temperature heat treatment severely reduces the filiform corrosion resistance of alloy AA3005, while the corrosion properties of alloy 5754 are only moderately affected. The drastic loss of filiform corrosion resistance of alloy AA3005 after high-temperature heat treatment is attributed to preferential microstructural changes in a heavily deformed, micrograined surface layer caused by large surface shear strain during rolling. The enhanced deformation of the near-surface region promotes precipitation of a fine dispersion of intermetallic particles during subsequent heat treatment. The higher density of intermetallic particles combined with lower supersaturated solid solution levels of manganese in the surface layer as compared to the bulk structure makes the heat-treated AA3005 material susceptible to superficial corrosion attacks and results in poor filiform corrosion resistance. Application of a commercial acid cleaning/chromating pre-treatment did not restore the filiform corrosion resistance of heat-treated alloy AA3005. Alloy AA5754, containing lower levels of manganese and iron than AA3005, did not undergo similar preferential microstructural changes during heat treatment. A moderate increase in the amount of filiform corrosion of heat-treated AA5754 samples is attributed to poor protective properties of the thick, magnesium enriched, thermally formed surface oxide on this alloy. Any cleaning/pre-treatment practice that removes the thermally formed oxide on this alloy results in a very high filiform corrosion resistance.  相似文献   
5.
The microstructural evolution during twin roll casting (TRC) and downstream processing of AA5754 Al alloy with high added impurity content have been investigated. Strip casts with a high impurity content resulted in coarse α-Al grains and complex secondary phases. The grain size and centerline segregation reduced significantly on the addition of Al-Ti-B grain refiner (GR). Coarse-dendrite arm spacing (DAS) “floating” grains are observed in the impure alloy (IA) with higher volume in the GR strips. Two-dimensional (2D) metallographic analysis of the as-cast strip suggests that secondary phases (Fe-bearing intermetallics and Mg2Si) are discrete and located at the α-Al cell/grain boundaries, while three-dimensional (3D) analysis of extracted particles revealed that they were intact, well interconnected, and located in interdendritic regions. Homogenizing heat treatment of the cast strip breaks the interconnective networks and modifies the secondary phases to a more equiaxed morphology. During rolling, the equiaxed secondary phases align along the rolling direction. X-ray diffraction (XRD) analysis suggests that α-Al(FeMn)Si and Mg2Si are the predominant secondary phases that are formed during casting and remain throughout the downstream processing of the GR-IA. The high-impurity sheet processed from TRC resulted in superior strength and ductility over the sheet processed from small book mold ingot casting. The current study has shown that the TRC process can tolerate higher impurity levels and produce formable sheets from the recycled aluminum for structural applications.  相似文献   
6.
Microstructural examination of the Al-5.3Mg-2.4Si-0.6Mn-1.0Fe alloy in the die-cast condition revealed that a significant number of the primary α-AlFeMnSi intermetallic particles were found inside both the coarse α-Al dendrite fragments formed in the shot sleeve and the fine α-Al grains formed in the die cavity. The heterogeneous nucleation of α-Al phase on primary α-AlFeMnSi intermetallic particle was further investigated experimentally. 3-Dimension (3D) scanning electron microscopy ultramicrotomy revealed that the probability of finding at least one primary α-AlFeMnSi intermetallic particle inside each α-Al grain was almost 90 pct. The detailed microstructural analysis identified the primary α-AlFeMnSi intermetallic particle as the α-Al12(Fe,Mn)3Si composition with a body-centered cubic structure and a lattice parameter of a = 1.265 nm. It was found that the primary α-Al12(Fe,Mn)3Si intermetallic particle had a faceted morphology with {110} planes exposed as its natural surfaces. High resolution transmission electron microscopy further confirmed that the crystallographic orientation relationship between α-Al12(Fe,Mn)3Si intermetallic particle and α-Al phase was: [111]α-AlFeMnSi//[110]Al and (1 \( \overline{1} \) 0)α-AlFeMnSi~6 deg from (1 \( \overline{1} \) 1)α-Al, and the corresponding interface between two phases could be confirmed as a semi-coherent interface with a lattice misfit of 2.67 pct at 933 K (660 °C), which was considerably smaller than the theoretical limit (5.7 pct) for epitaxial nucleation. Finally, based on these experimental evidences and the epitaxial nucleation model, we concluded that the primary α-Al12(Fe,Mn)3Si intermetallic particles were both potent and effective nucleating substrates for the α-Al phase.  相似文献   
7.
Al-Zn-Mg alloys become embrittled during exposure to moist environments due to hydrogen penetration of grain boundaries. The result of this hydrogen penetration due to surface reaction with water vapour of both bulk specimens and electron-transparent thin foils, has been studied at high resolution in the JEM 100 C transmission electron microscope as a function of alloy composition and ageing treatment. In bulk specimens of alloys solution-heated, water-quenched, and aged in water-vapour-saturated air at 70° C, the hydrogen is in the form of a mobile atomic species which is transformed to bubbles of molecular hydrogen under the action of the electron beam. However, in electron-transparent specimens of aged alloys after exposure to water vapour the accumulated hydrogen is observed directly as bubbles. These bubbles take the form of hexagonal lenses bounded by {111} planes, and are associated with grain-boundary precipitates, particularly in over-aged microstructures, and with primary intermetallic particles in alloys containing sparingly soluble transition elements. The consequence of the observed hydrogen penetration of grain boundaries in promoting environmental debilitation of mechanical properties and stress-corrosion cracking of Al-Zn-Mg alloys is discussed.  相似文献   
8.
Near-surface deformed layers, which are characterized by nano-sized fine grains, are generated in aluminum alloys by hot and cold rolling. During the rolling processes, the alloy surface and near-surface regions experience a high level of shear deformation that results in significant microstructure refinement, leading to formation of near-surface deformed layers with microstructures different from that of the underlying bulk alloy. Two types of near-surface deformed layers are observed. Type A is characterized by fine grains with grain boundaries decorated by oxide particles; type B is characterized also by fine grains but with the grain boundaries free of oxide particles. The high levels of shear deformation result in dynamic recrystallization. Together with mechanical alloying, this is responsible for the formation of the near-surface deformed layer. Furthermore, the structure in the near-surface deformed layer can survive the typical annealing process particularly if the grain boundaries are pinned by oxide particles.  相似文献   
9.
As a result of prior research into the estimating and planning skills of experienced engineers, a number of observable goal-directed expert practices were identified. A computer assisted learning package was developed to teach these to less experienced, practicing engineers. The primary teaching mechanism required the learner to infer how alternative practices differed. This was reinforced both by demonstrating practices in analogous domains, and by showing learners how different practices make different assumptions about the task environment. An evaluation program was conducted with 35 participants in nine organizations, with a number of findings. Individual differences occurred in a variety of ways and proved problematic both for the design of the interface and that of the learning mechanisms. Learners' preconceptions were also problematic in some instances, but seem to be unavoidable in teaching empirical practices to experienced learners. Nonetheless the learning mechanisms worked well, except in isolated instances, particularly the use of analogies. Analogies appeared to be effective both in helping learners transfer practices between everyday tasks and engineering estimation tasks, and in helping them reflect on their current practices  相似文献   
10.
Intergranular sustained-load cracking of Al-Zn-Mg-Cu (AA7xxx series) aluminum alloys exposed to moist air or distilled water at temperatures in the range 283 K to 353 K (10 °C to 80 °C) has been reviewed in detail, paying particular attention to local processes occurring in the crack-tip region during crack propagation. Distinct crack-arrest markings formed on intergranular fracture faces generated under fixed-displacement loading conditions are not generated under monotonic rising-load conditions, but can form under cyclic-loading conditions if loading frequencies are sufficiently low. The observed crack-arrest markings are insensitive to applied stress intensity factor, alloy copper content and temper, but are temperature sensitive, increasing from ~150 nm at room temperature to ~400 nm at 313 K (40 °C). A re-evaluation of published data reveals the apparent activation energy, E a for crack propagation in Al-Zn-Mg(-Cu) alloys is consistently ~35 kJ/mol for temperatures above ~313 K (40 °C), independent of copper content or the applied stress intensity factor, unless the alloy contains a significant volume fraction of S-phase, Al2CuMg where E a is ~80 kJ/mol. For temperatures below ~313 K (40 °C) E a is independent of copper content for stress intensity factors below ~14 MNm−3/2, with a value ~80 kJ/mol but is sensitive to copper content for stress intensity factors above ~14 MNm−3/2, with E a , ranging from ~35 kJ/mol for copper-free alloys to ~80 kJ/mol for alloys containing 1.5 pct Cu. The apparent activation energy for intergranular sustained-load crack initiation is consistently ~110 kJ/mol for both notched and un-notched samples. Mechanistic implications are discussed and processes controlling crack growth, as a function of temperature, alloy copper content, and loading conditions are proposed that are consistent with the calculated apparent activation energies and known characteristics of intergranular sustained-load cracking. It is suggested, depending on the circumstances, that intergranular crack propagation in humid air and distilled water can be enhanced by the generation of aluminum hydride, AlH3, ahead of a propagating crack and/or its decomposition after formation within the confines of the nanoscale volumes available after increments of crack growth, defined by the crack arrest markings on intergranular fracture surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号