首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
综合类   1篇
化学工业   1篇
一般工业技术   5篇
冶金工业   1篇
自动化技术   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有10条查询结果,搜索用时 375 毫秒
1
1.
We report on the application of silicon micromachining for the fabrication of miniaturized electron gun (MEG) assembly using vertically aligned carbon nanotubes. The proposed MEG consists of two main parts of electron gun and the accelerating column. While the electron gun consists of carbon nanotubes grown on a silicon substrate acting as an electron emission source, the accelerating column is made of micromachined silicon wafers with 5 μm thick membranes operating as objective lenses. These two wafers are placed together and sealed using a three-dimensional packaging technique. The simulation and experimental results show the evolution of a narrow electron beam by applying a proper voltage to the anodes and objective lens. The diverging and focusing of the beam can be controlled by applying the proper voltage on electrostatic lenses. This structure could be suitable for low energy SEM devices and surface physics applications.  相似文献   
2.
Metallurgical and Materials Transactions A - In this study, mechanisms of microstructural evolution during hot deformation of Ti-1100 were investigated by EBSD analysis. Misorientation angle...  相似文献   
3.
A large absolute higher-order stop-band is achieved in two-dimensional (2D) photonic crystals of square lattice. A genetic algorithm is used to search through a large number of possible structures. In this algorithm, the unit cell is divided into a grid of square pixels and a 2D binary chromosome is assigned to each filling pattern of the pixels. An initial structure with a small higher-order stop-band is included in the initial population to accelerate the search procedure. This initial structure is formed by breaking the symmetry of the supercell of a photonic crystal having a square lattice of square dielectric rods in air. In the optimization process, the effect of reducing the symmetry of the unit cell on the photonic band-gap is investigated. A structure showing an absolute higher-order band-gap as large as 0.1522(2πc/a) is obtained, which is larger than the values reported so far for photonic stop-bands.  相似文献   
4.
This work evaluated the isothermal transformation of austenite in unalloyed pearlitic ductile iron and drew the isothermal phase diagram of austenitization in the ductile iron. Austenite forms at grain boundaries and then grows up to graphite regions during austenitiza-tion. The formation kinetics of austenite complies with the Avrami equation, in which the parameter (n) ranges from 4.71 to 4.99. The start time and finish time of transformation can be calculated at each temperature using the Avrami equation.  相似文献   
5.
Patenting and licensing is not only a significant method of university knowledge transfer, but also an important indicator for measuring academic R&D strength and knowledge utilization. The methodologies of quantitative and qualitative analysis, including a special patent h-index indicator to assess patenting quality, were used to examine university patenting worldwide. Analysis of university patenting from 1998 to 2008 showed a significant overall global increase in which Chinese academia stands out: most of the top 20 universities in patenting in 2008 were in China. However, a low rate of utilization of Chinese academic patents may have roots in: (1) university research evaluation system encourages the patent production more, rather than the utilization; (2) problems in the formal mechanisms for university technology transfer and licensing, (3) industry’s limited expectation and receptive capabilities and/or (4) a mismatch between the interests of the two institutional spheres. The next action to be taken by government, university and industry in China will be to explore strategies for improving academic patent quality and industry take-up.  相似文献   
6.
In this report, the fabrication of vertically aligned carbon nanotube nanoelectrode array (VACNT-NEA) by photolithography method is presented. Electrochemical impedance spectroscopy as well as cyclic voltammetry was performed to characterize the arrays with respect to different diffusion regimes. The fabricated array illustrated sigmoidal cyclic voltammogram with steady state current dominated by radial diffusion. The fabricated VACNT-NEA and high density VACNTs were employed as electrochemical glutamate biosensors. Glutamate dehydrogenase is covalently attached to the tip of CNTs. The voltammetric biosensor, based on high density VACNTs, exhibits a sensitivity of 0.976 mA mM(-1) cm(-2) in the range of 0.1-20 μM and 0.182 mA mM(-1) cm(-2) in the range of 20-300 μM glutamate with a low detection limit of 57 nM. Using the fabricated VACNT-NEA, the sensitivity increases approximately to a value of 2.2 Am M(-1) cm(-2) in the range of 0.01 to 20 μM and to 0.1 A mM(-1) cm(-2) in the range of 20-300 μM glutamate. Using this electrode, a record of low detection limit of 10 nM was achieved for glutamate. The results prove the efficacy of the fabricated NEA for low cost and highly sensitive enzymatic biosensor with high sensitivity well suited for voltammetric detection of a wide range of clinically important biomarkers.  相似文献   
7.
Hollow inorganic nanostructures have drawn great attention due to their fascinating features, such as large surface area, high loading capacity, and high permeability. The formation, characterization, and application of partially and entirely hollow structure by applying a Si‐based reactive ion deposition and etching method on silicon nanowire as a template are reported. This fabrication technique is extended to a stainless steel substrate to be used as the binder‐free anode for high capacity and high rate lithium‐ion batteries. The electrochemical analyses exhibit that in addition to the high initial discharge capacity of 4125 mAh g?1 at a rate of C/16, the best performing electrode shows discharge/charge capacity of as high as 3302.14/2832.1 mAh g?1, respectively, with an excellent charge capacity retention of 96.7% over 100 cycles at a rate density of 1 C. Even at a rate of 12 C, the as‐designed structure is still able to deliver an impressive 1553 mAh g?1, which probably is attributed to fast lithium diffusion in its hollow part and high porosity of Si and alumina layer. It is proved that the change in hollowness ratio significantly affects capacity retention and average coulombic efficiency of the lithium‐ion cells.  相似文献   
8.
Microsystem Technologies - Design and fabrication of an in-plane silicon Fabry–Perot temperature sensor for fiber-optic temperature sensing was reported in our previous work. To fabricate...  相似文献   
9.
Oxidative coupling of methane (OCM) in the presence of DC corona is reported in a narrow glass tube reactor at atmospheric pressure and at temperatures below 200°C. The corona is created by applying 2200V between a tip and a plate electrode 1.5 mm apart. The C2 selectivity as well as the methane conversion are functions of methane‐to‐oxygen ratio, gas residence time, and electric current. At CH4/O2 ratio of 5 and the residence time of about 30 ms, a C2 yield of 23.1% has been achieved. The main products of this process are ethane, ethylene, acetylene as well as CO and CO2 with CO/CO2 ratios as high as 25. It is proposed that methane is activated by electrophilic oxygen species to form methyl radicals and C2 products are produced by a consecutive mechanism, whereas COx is formed during parallel reactions.  相似文献   
10.
In this study, the preparation of titanium dioxide nanocrystals by sol–gel method has been considered. Then, the effect of modifier ligands such as acetylacetone (AcAc) and acetic acid (AcOH) on synthesis of TiO2 nanocrystalline powders has been investigated. The experimental results showed that the reaction of tetraisopropoxide titanium, Ti(OPri)4, with acetylacetone and acetic acid leads to formation of complexes that can prevent the precipitation of undesired phases from highly reactive precursors. Whereas, the band of ligands to TiO2 nanocrystals is not broken easily at temperatures lower than about 400 °C. So these ligands may remain in the final TiO2 nanostructures and affect the morphology and structure of prepared materials. The studied samples were characterized using Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric and Differential thermal analysis (TG-DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号