首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
建筑科学   1篇
无线电   1篇
一般工业技术   1篇
自动化技术   10篇
  2023年   1篇
  2019年   2篇
  2018年   2篇
  2015年   1篇
  2012年   1篇
  2007年   2篇
  2005年   4篇
排序方式: 共有13条查询结果,搜索用时 733 毫秒
1.
Classification of brain hemorrhage computed tomography (CT) images provides a better diagnostic implementation for emergency patients. Attentively, each brain CT image must be examined by doctors. This situation is time-consuming, exhausting, and sometimes leads to making errors. Hence, we aim to find the best algorithm owing to a requirement for automatic classification of CT images to detect brain hemorrhage. In this study, we developed OzNet hybrid algorithm, which is a novel convolution neural networks (CNN) algorithm. Although OzNet achieves high classification performance, we combine it with Neighborhood Component Analysis (NCA) and many classifiers: Artificial neural networks (ANN), Adaboost, Bagging, Decision Tree, K-Nearest Neighbor (K-NN), Linear Discriminant Analysis (LDA), Naïve Bayes and Support Vector Machines (SVM). In addition, Oznet is utilized for feature extraction, where 4096 features are extracted from the fully connected layer. These features are reduced to have significant and informative features with minimum loss by NCA. Eventually, we use these classifiers to classify these significant features. Finally, experimental results display that OzNet-NCA-ANN excellent classifier model and achieves 100% accuracy with created Dataset 2 from Brain Hemorrhage CT images.  相似文献   
2.
Current trends in clinical applications demand automation in electrocardiogram (ECG) signal processing and heart beat classification. This paper examines the design of an effective recognition method to diagnose heart diseases. The proposed method consists of three main modules: de-noising module, feature extraction module, and classifier module. In the de-noising module, multiscale principal component analysis (MSPCA) is used for noise reduction of the ECG signals. In the feature extraction module, autoregressive (AR) modeling is used for extracting features. In the classifier module, different classifiers are examined such as simple logistic, k-nearest neighbor, multilayer perceptron, radial basis function networks, and support vector machines. Different experiments are carried out using the MIT-BIH arrhythmia database to classify different ECG heart beats and the performance of the proposed method is evaluated in terms of several standard metrics. The experimental results show that the proposed method is able to reduce noise from the noisy ECG signals more accurately in comparison to previous methods. The numerical results indicated that the proposed algorithm achieved 99.93 % of the classification accuracy using MSPCA de-noising and AR modeling.  相似文献   
3.
In this study, 5-s long sequences of full-spectrum electroencephalogram (EEG) recordings were used for classifying alert versus drowsy states in an arbitrary subject. EEG signals were obtained from 30 healthy subjects and the results were classified using a wavelet-based neural network. The wavelet-based neural network model, employing the multilayer perceptron (MLP), was used for the classification of EEG signals. A multilayer perceptron neural network (MLPNN) trained with the Levenberg–Marquardt algorithm was used to discriminate the alertness level of the subject. In order to determine the MLPNN inputs, spectral analysis of EEG signals was performed using the discrete wavelet transform (DWT) technique. The MLPNN was trained, cross-validated, and tested with training, cross-validation, and testing sets, respectively. The correct classification rate was 93.3% alert, 96.6% drowsy, and 90% sleep. The classification results showed that the MLPNN trained with the Levenberg–Marquardt algorithm was effective for discriminating the vigilance state of the subject.  相似文献   
4.
Epileptic seizures are manifestations of epilepsy. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in diagnostic classification. This paper deals with a novel method of analysis of EEG signals using wavelet transform and classification using artificial neural network (ANN) and logistic regression (LR). Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities and repeated patterns where other signal processing approaches fail or are not as effective. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. In epileptic seizure classification we used lifting-based discrete wavelet transform (LBDWT) as a preprocessing method to increase the computational speed. The proposed algorithm reduces the computational load of those algorithms that were based on classical wavelet transform (CWT). In this study, we introduce two fundamentally different approaches for designing classification models (classifiers) the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on ANN. Logistic regression as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used LBDWT coefficients of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or non-epileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying LBDWT in connection with MLPNN, we obtained novel and reliable classifier architecture. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN based classifier was more accurate than the LR based classifier.  相似文献   
5.

This study compares time series and machine learning models for inflation forecasting. Empirical evidence from the USA between 1984 and 2014 suggests that out of sixteen conditions (four different inflation indicators and four different horizons), machine learning models provide more accurate forecasting results in seven conditions and the time series models are better in nine conditions. Moreover, multivariate models give better results in fourteen conditions, and univariate models are better only in two conditions. This study shows that machine learning model prevails against time series models for the core personal consumption expenditure (core-PCE) inflation forecasting, and the time series model (ARDL) is better for the core consumer price (core-CPI) index inflation forecasting in all horizons.

  相似文献   
6.
Although microfinance organizations play an important role in developing economies, decision support models for microfinance credit scoring have not been sufficiently covered in the literature, particularly for microcredit enterprises. The aim of this paper is to create a three‐class model that can improve credit risk assessment in the microfinance context. The real‐world microcredit data set used in this study includes data from retail, micro, and small enterprises. To the best of the authors' knowledge, existing research on microfinance credit scoring has been limited to regression and genetic algorithms, thereby excluding novel machine learning algorithms. The aim of this research is to close this gap. The proposed models predict default events by analysing different ensemble classification methods that empower the effects of the synthetic minority oversampling technique (SMOTE) used in the preprocessing of the imbalanced microcredit data set. Initial results have shown improvement in the prediction results for certain classes when the oversampling technique with homogeneous and heterogeneous ensemble classifier methods was applied. A prediction improvement for all classes was achieved via application of SMOTE and the Consolidated Trees Construction algorithm together with Rotation Forest. To obtain a complete view of all aspects, an additional set of metrics is used in the evaluation of performance.  相似文献   
7.
The motor unit action potentials (MUPs) in an electromyographic (EMG) signal provide a significant source of information for the assessment of neuromuscular disorders. Since recently there were different types of developments in computer-aided EMG equipment, different methodologies in the time domain and frequency domain has been followed for quantitative analysis of EMG signals. In this study, the usefulness of the different feature extraction methods for describing MUP morphology is investigated. Besides, soft computing techniques were presented for the classification of intramuscular EMG signals. The proposed method automatically classifies the EMG signals into normal, neurogenic or myopathic. Also, multilayer perceptron neural networks (MLPNN), dynamic fuzzy neural network (DFNN) and adaptive neuro-fuzzy inference system (ANFIS) based classifiers were compared in relation to their accuracy in the classification of EMG signals. Concerning the impacts of features on the EMG signal classification, different results were obtained through analysis of the soft computing techniques. The comparative analysis suggests that the ANFIS modelling is superior to the DFNN and MLPNN in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability.  相似文献   
8.
Performance of ATM networks depends on switch performance and architecture. This paper presents a simulation study of a new dynamic allocation of input buffer space in ATM switching elements. The switching elements are composed of input and output buffers which are used to store received and forwarded cells, respectively. Efficient and fair use of buffer space in an ATM switch is essential to gain high throughput and low cell loss performance from the network. In this paper, input buffer space of each switching element is allocated dynamically as a function of traffic load. A shared buffer pool is provided with threshold-based virtual partition among input ports, which supplies the necessary input buffer space as required by each input port. The system behaviour under varying traffic loads has investigated using a simulation program. Also, a comparison with a static allocation scheme shows that the threshold based dynamic buffer allocation scheme ensures an increased network throughput and a fair share of the buffer space even under bursty loading conditions.  相似文献   
9.

Cancer classification is one of the main steps during patient healing process. This fact enforces modern clinical researchers to use advanced bioinformatics methods for cancer classification. Cancer classification is usually performed using gene expression data gained in microarray experiment and advanced machine learning methods. Microarray experiment generates huge amount of data, and its processing via machine learning methods represents a big challenge. In this study, two-step classification paradigm which merges genetic algorithm feature selection and machine learning classifiers is utilized. Genetic algorithm is built in MapReduce programming spirit which makes this algorithm highly scalable for Hadoop cluster. In order to improve the performance of the proposed algorithm, it is extended into a parallel algorithm which process on microarray data in distributed manner using the Hadoop MapReduce framework. In this paper, the algorithm was tested on eleven GEMS data sets (9 tumors, 11 tumors, 14 tumors, brain tumor 1, lung cancer, brain tumor 2, leukemia 1, DLBCL, leukemia 2, SRBCT, and prostate tumor) and its accuracy reached 100% for less than 25 selected features. The proposed cloud computing-based MapReduce parallel genetic algorithm performed well on gene expression data. In addition, the scalability of the suggested algorithm is unlimited because of underlying Hadoop MapReduce platform. The presented results indicate that the proposed method can be effectively implemented for real-world microarray data in the cloud environment. In addition, the Hadoop MapReduce framework demonstrates substantial decrease in the computation time.

  相似文献   
10.
Neural Computing and Applications - The aim of this study is to establish a hybrid model for epileptic seizure detection with genetic algorithm (GA) and particle swarm optimization (PSO) to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号