首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
  国内免费   1篇
电工技术   7篇
综合类   3篇
化学工业   3篇
能源动力   5篇
无线电   2篇
一般工业技术   7篇
自动化技术   46篇
  2022年   4篇
  2021年   6篇
  2020年   11篇
  2019年   10篇
  2018年   22篇
  2017年   14篇
  2015年   2篇
  2014年   1篇
  2012年   3篇
排序方式: 共有73条查询结果,搜索用时 281 毫秒
1.
Parameter estimation plays an important role in the field of system control. This article is concerned with the parameter estimation methods for multivariable systems in the state-space form. For the sake of solving the identification complexity caused by a large number of parameters in multivariable systems, we decompose the original multivariable system into some subsystems containing fewer parameters and study identification algorithms to estimate the parameters of each subsystem. By taking the maximum likelihood criterion function as the fitness function of the differential evolution algorithm, we present a maximum likelihood-based differential evolution (ML-DE) algorithm for parameter estimation. To improve the parameter estimation accuracy, we introduce the adaptive mutation factor and the adaptive crossover factor into the ML-DE algorithm and propose a maximum likelihood-based adaptive differential evolution algorithm. The simulation study indicates the efficiency of the proposed algorithms.  相似文献   
2.
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.  相似文献   
3.
This paper is concerned with the problem of asymptotic stability of neutral type Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays. By constructing a suitable Lyapunov–Krasovskii functional (LKF), reciprocal convex technique and Jensen’s inequality are used to delay-dependent conditions are established to analysis the asymptotic stability of Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays. These stability conditions are formulated as linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms. Finally numerical examples are given to illustrate the usefulness of our proposed method.  相似文献   
4.
The issue of bifurcation control for a delayed fractional network involving two neurons is concerned. Delay-dependent stability conditions and the bifurcation point are established by discussing the associated characteristic equation of the proposed network. Then, a delayed feedback controller is firstly designed to stabilize the Hopf bifurcation, and desirable dynamics is achieved. It is indicated that the designed controller is extremely effective which can postpone the onset of bifurcation by carefully selecting the feedback gain. Finally, simulation results are given to verify the efficiency of the theoretical results.  相似文献   
5.
In this study, unsteady boundary layer flow with Casson nanofluid within the sight of chemical reaction toward a stretching sheet has been analyzed mathematically. The fundamental motivation behind the present examination is to research the influence of different fluid parameters, in particular, Casson fluid β(0.2β0.4), thermophoresis Nt(0.5Nt1.5), magnetohydrodynamic M(3.0M5.0), Brownian movement Nb(0.5Nb2.0), Prandtl numberty, unsteadiness parameter A(0.10A0.25), chemical reaction parameter γ(0.1γ0.8), and Schmidt number Sc(1.0Sc3.0) on nanoparticle concentration, temperature, and velocity distribution. The shooting procedure has been adopted to solve transformed equations with the assistance of Runge–Kutta Fehlberg technique. The impact of different controlling fluid parameters on flow, heat, and mass transportation are depicted in tabular form and are shown graphically. Additionally, values of skin friction coefficient, Nusselt number, and Sherwood number are depicted via tables. Present consequences of the investigation for Nusselt number are related with existing results in writing by taking Nb=0 and Nt=0 where results are finding by utilization of MATLAB programming. Findings of current research help in controlling the rate of heat and mass aspects to make the desired quality of final product aiding manufacturing companies and industrial areas.  相似文献   
6.
Because of the product item of the control input and the state vector, the identification of bilinear systems is difficult. This paper considers the combined parameter and state estimation problems of bilinear state-space systems. On the basis of the observability canonical form and the model transformation, an identification model with a linear combination of the system parameters is obtained. Using the hierarchical principle, the identification model is decomposed into three submodels with fewer variables, and a three-stage least squares-based iterative (3S-LSI) algorithm is presented to estimate the system parameters. Furthermore, we derive a state estimator (SE) for estimating the unknown states, and present an SE-3S-LSI algorithm for estimating the unknown parameters and states simultaneously. After that, the least squares-based iterative algorithm is presented as a comparison. By analyzing the estimation results and the calculation amount, these two algorithms can identify the bilinear system effectively but the 3S-LSI algorithm can improve the computational efficiency. The simulation results indicate the effectiveness of the proposed algorithms.  相似文献   
7.
Many dynamic processes in practice have nonlinear characteristics and must be described by using nonlinear models. It remains to be a challenging problem to build the models of such nonlinear systems and to estimate their parameters. This article studies the parameter estimation problem for a class of Hammerstein-Wiener nonlinear systems based on non-uniform sampling. By means of the auxiliary model identification idea, an auxiliary model-based recursive least squares algorithm is derived for the systems. In order to enhance the computational efficiency, an auxiliary model-based hierarchical least squares algorithm is proposed by utilizing the hierarchical identification principle. The simulation results confirm the effectiveness of the proposed algorithms.  相似文献   
8.

An analysis is introduced to investigate the salient features of nonlinear convective flow of thixotropic fluid in the version of Cattaneo-Christov heat flux theory. The stagnation point flow is present. The flow phenomenon is by an impermeable stretching sheet. The energy expression is modeled through the theory of Cattaneo-Christov heat flux. Characteristics of heat transfer phenomenon are described within the frame of variable thermal conductivity. Suitable variables reduced to the nonlinear partial differential expressions to the ordinary differential expressions. Series solutions of resulting systems are acquired within the frame of homotopy theory. Convergence analysis is achieved and suitable values are determined by capturing the so-called −curves. Graphical results for velocity and temperature are displayed and argued for sundry physical variables. Expression of skin friction coefficient is calculated through numerical values. Higher values of mixed convection parameter, Prandtl number, and thermal relaxation time lead to decay the temperature and layer thickness.

  相似文献   
9.
Hayat  T.  Zubair  M.  Waqas  M.  Alsaedi  A.  Ayub  M. 《Neural computing & applications》2019,31(1):199-205

The objective here is to examine the characteristics of non-Fourier flux theory in flow induced by a nonlinear stretched surface. Constitutive expression for an incompressible Walter-B liquid is taken into account. Consideration of thermal stratification and variable thermal conductivity characterizes the heat transfer process. The concept of boundary layer is adopted for the formulation purpose. Modern methodology for the computational process is implemented. Surface drag force is computed and discussed. Salient features of significant variables on the physical quantities are reported graphically. It is explored that velocity is enhanced for a larger ratio of rate constants. The increasing values of thermal relaxation factor correspond to less temperature.

  相似文献   
10.

We propose a modified Fitzhugh-Nagumo neuron (MFNN) model. Based on this model, an integer-order MFNN system (case A) and a fractional-order MFNN system (case B) were investigated. In the presence of electromagnetic induction and radiation, memductance and induction can show a variety of distributions. Fractional-order magnetic flux can then be considered. Indeed, a fractional-order setting can be acceptable for non-uniform diffusion. In the case of an MFNN system with integer-order discontinuous magnetic flux, the system has chaotic and non-chaotic attractors. Dynamical analysis of the system shows the birth and death of period doubling, which is a sign of antimonotonicity. Such a behavior has not been studied previously in the dynamics of neurons. In an MFNN system with fractional-order discontinuous magnetic flux, different attractors such as chaotic and periodic attractors can be observed. However, there is no sign of antimonotonicity.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号