首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   5篇
电工技术   1篇
综合类   1篇
化学工业   15篇
机械仪表   5篇
能源动力   4篇
轻工业   6篇
无线电   2篇
一般工业技术   10篇
冶金工业   2篇
自动化技术   5篇
  2022年   6篇
  2021年   10篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有51条查询结果,搜索用时 125 毫秒
1.
2.
Removal by absorptive ceramic membranes can simultaneously absorb and separate metal ions from water. Alumina/yttria‐stabilized zirconia (Al2O3/YSZ) hollow‐fiber membranes, fabricated using phase inversion and sintering process, were deposited with iron oxide by an in‐situ hydrothermal process. The results showed that α‐Fe2O3 was produced and incorporated across the membranes. A reduction in flux was recorded with the deposition of α‐Fe2O3. However, it improved the adsorption capacity for heavy metal adsorption. The adsorption‐separation test demonstrated that the optimized membrane is able to completely remove Pb(II) ions after two hours.  相似文献   
3.

Safety and reliability are absolutely important for modern sophisticated systems and technologies. Therefore, malfunction monitoring capabilities are instilled in the system for detection of the incipient faults and anticipation of their impact on the future behavior of the system using fault diagnosis techniques. In particular, state-of-the-art applications rely on the quick and efficient treatment of malfunctions within the equipment/system, resulting in increased production and reduced downtimes. This paper presents developments within Fault Detection and Diagnosis (FDD) methods and reviews of research work in this area. The review presents both traditional model-based and relatively new signal processing-based FDD approaches, with a special consideration paid to artificial intelligence-based FDD methods. Typical steps involved in the design and development of automatic FDD system, including system knowledge representation, data-acquisition and signal processing, fault classification, and maintenance related decision actions, are systematically presented to outline the present status of FDD. Future research trends, challenges and prospective solutions are also highlighted.

  相似文献   
4.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   
5.
Medical systems based on state of the art image processing and pattern recognition techniques are very common now a day. These systems are of prime interest to provide basic health care facilities to patients and support to doctors. Diabetic macular edema is one of the retinal abnormalities in which diabetic patient suffers from severe vision loss due to affected macula. It affects the central vision of the person and causes total blindness in severe cases. In this article, we propose an intelligent system for detection and grading of macular edema to assist the ophthalmologists in early and automated detection of the disease. The proposed system consists of a novel method for accurate detection of macula using a detailed feature set and Gaussian mixtures model based classifier. We also present a new hybrid classifier as an ensemble of Gaussian mixture model and support vector machine for improved exudate detection even in the presence of other bright lesions which eventually leads to reliable classification of input retinal image in different stages of macular edema. The statistical analysis and comparative evaluation of proposed system with existing methods are performed on publicly available standard retinal image databases. The proposed system has achieved average value of 97.3%, 95.9% and 96.8% for sensitivity, specificity and accuracy respectively on both databases.  相似文献   
6.
The polymer/cement/carbon nanotube composites are known for piezoelectric properties in intelligent structures. Polymers are also used to fulfill deficiencies in carbon nanotube/cement mortars. High-impact polystyrene has replaced sand to enhanced properties like energy consumption, waste disposal, and environmental pollution. Spray-applied fire-resistive material in engineered cementitious composite may overcome drawbacks of conventional brittle composite. Carbon nanotube is used as nanofillers in ordinary Portland cement due to superior mechanical properties. Cementitious polymer/carbon nanotube composite has potential to determine heat-dependent and self-sensing capacity of composites. Smart properties of composites are measured using conductivity measurement. Polymers are also used for making better carbon nanotube dispersion.  相似文献   
7.
Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF‐TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF‐TNTs by using commercial and cheaper materials for cost‐effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye‐sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer‐Emmett‐Teller (BET), electrochemical impedance spectrum, incident‐photon‐to‐current efficiency, and intensity‐modulated photocurrent spectroscopy/intensity‐modulated photovoltage spectroscopy characterizations are proving the functionality of HF‐TNTs for DSSCs. HF‐TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C‐TNTs). The DSSCs having HF‐TNT and its composite‐based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC, quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N‐719 dye is achieved, for 1D‐based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye‐sensitized solar cells, Li‐ion batteries, photocatalysis process, ion‐exchange/adsorption process, and photoelectrochemical devices.  相似文献   
8.
The difference between various approximate methods to compute the wave kinematics and forces acting on a Spar platform up to the instantaneous free water surface is investigated. Three types of procedures are considered; i.e., extrapolation, stretching (both simple extensions of linear wave theory) and the hybrid wave model (which involves decomposition of the incident wave into first- and second-order components). Of particular interest for the dynamic response of a Spar are the nonlinear (second- and higher-order) low-frequency forces. The effects of the different procedures are compared analytically and numerically for the inertia forces using Morison et al.’s equation as reported in 1950, but the conclusions can be extended to diffraction theory formulations.  相似文献   
9.
The present study concentrated on the use of an agro-waste biodegradable sorghum biomass in its simple and modified forms for the binding of Cr (III) ions. A relatively new method of modification was adopted using urea under microwave irradiation. FTIR analysis showed the presence of oxygen and nitrogen bearing functional groups in unmodified (UMS) and modified (MS) sorghum biomass. The appearance of new bands and shifts in the peaks confirmed the modification. The influence of different process parameters such as the adsorbent dose, solution pH, contact time, agitation speed and initial metal ion concentration was studied thoroughly to evaluate optimum conditions for adsorption. Maximum adsorption for Cr (III) ions occurred at pH 5.0–6.0 using UMS and MS. Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models in a non-linear fashion were used to explain the phenomenon. Maximum adsorption capacity was 7.03 and 16.36 mg of Cr (III) per gram of UMS and MS, respectively. Adsorption mechanism was explored by pseudo-first- and pseudo-second-order kinetic models, and it was found that the process followed pseudo-second-order kinetics. Thermodynamic study indicated the process favorability. The study concluded that urea modification under microwave irradiation produces a non-toxic and more effective adsorbent for Cr (III) remediation by inducing new nitrogen bearing functional groups to sorghum biomass.  相似文献   
10.
Khan  Anam  Loan  Sajad A. 《SILICON》2021,13(5):1421-1431
Silicon - In this paper, we propose and simulate a novel double gate tunnel field effect transistor (DG-TFET) employing a metallic drain and a gate-drain underlap. The use of a metallic drain and...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号