首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
化学工业   3篇
机械仪表   1篇
建筑科学   3篇
矿业工程   1篇
能源动力   4篇
轻工业   1篇
一般工业技术   2篇
冶金工业   2篇
自动化技术   3篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
排序方式: 共有20条查询结果,搜索用时 125 毫秒
1.
Power plants in Kuwait use gas turbines (GT) only for a few hours to produce power at peak load times. Peak loadoccurs in the summer due to the air-conditioning load. As an example, the average number of operating hours for six gas turbines in the Doha East power plant was 16 in the summer of 2001. There is little concern about efficiency of these GT since they work for a very short time during the year. However, a recent increase in desalted seawater demand suggests the use of these GT to operate reverse osmosis (RO) desalting systems all year around. The summer outside design temperature in Kuwait for air-conditioning calculations is 48°C dry bulb temperature (DBT), and 28°C wet bulb temperature (WBT); but the ambient temperature can easily reach 60°C. Gas turbine power output and efficiency are drastically reduced by the increase in temperature of intake air to the gas turbine's compressor, especially during harsh Kuwaiti summer conditions. Thus, it is essential to investigate cooling of air intake to the GT compressor. The performance of a typical GT unit and its ability to produce desalted waterby a RO desalting system at different ambient temperatures are presented. Calculation of needed capacities for the cooling of intake air to the GT compressor was performed for evaporative cooling, single and multiple mechanical vapor compression cycles, and combined indirect evaporation cooling with the refrigeration system. The improvements of power output and efficiency due to the cooling of air intake of the GT and the resulting increase in desalted water are also presented.  相似文献   
2.
In this study, we develop a spatial decision support system (SDSS) for water management in a basin characterised by existing and projected dams to satisfy freshwater demand while preserving a particular ecosystem. The territorial and functional interests along with management scenarios were integrated into consistent stages of the SDSS. The developed prototype allowed comparisons of multiple water allocation options to competing users in the catchment by two aggregation methods. Through a simulation modelling exercise and stakeholder's involvement, the main outputs are the development of water management options and a set of criteria/subcriteria to evaluate these options related to socio‐economic, water availability and ecological factors. Both aggregation methods reveal the positive effect of water transfer on overall evaluations. New dam construction would cause an increase in the overall evaluation from the SDSS by at best 34% when water availability criteria are favoured, while a decrease in overall evaluation by at worst 75% is indicated when ecological criteria are favoured.  相似文献   
3.
An experimental investigation of heat transfer from a round air jet impinging normally from below onto a heated square plate was performed. The objective of the investigation was to study the effect of roughness on both the heat transfer and the fluid flow characteristics. Smooth and rough plates were, therefore, used in the course of the experiments. The heat transfer data were collected for four jet Reynolds numbers, ranging from 6500 to 19 000. The Reynolds numbers are based on the jet-exit velocity (Ue) and the nozzle-exit diameter (D), Ree=UeD/ν. The nozzle-to-plate distance ranged from 0.05 to 15 nozzle-exit diameter to cover both the potential core and the far regions of the jet flow. The roughness was composed of cubes of 1 mm dimension distributed uniformly along the plate. The local and average Nusselt number values for the rough plate showed an increase ranging from 8.9% to 28% over those for the smooth plate. Roughness was found to have a strong effect on the flow characteristics; it affected the mean velocity as well as the turbulence intensity of the flow. The mean velocity profiles for the smooth case at radial distances of r/D=1 and r/D=2.5 showed steeper near-wall velocity gradients compared with the profiles of the rough case, where r is the radial distance measured from the plate center along the plate centerline. In addition, roughness caused an increase in the turbulence intensity of the flow.  相似文献   
4.
A transient-contaminant-transport model is developed for assessing IAQ in the breathing zone when introducing return air into rooms conditioned by CC/DV system to save energy. The steady state transport model of [1] is extended to transient conditions while accounting for significant wall plumes associated with external loads.Experiments are performed to validate the extended model predictions of IAQ expressed in the level of CO2 concentration. Experiments are conducted in a chamber with two external walls in Kuwait Climate. Measurements are recorded in time of the air temperature and CO2 concentration at selected locations in the room and compared with values predicted by the model. Experimental results agreed well with model predictions. The maximum errors in predicted CO2 concentrations are less than ±25 ppm in presence of external load. 60% fresh air fraction resulted in 37% less energy consumption compared with 100% fresh air CC/DV system.The validated model is applied to a case study in Kuwait to evaluate energy saving over the cooling season for a typical office space while using mixed DV air. Energy savings of up to 20.6% can be realized using mixed supply air while maintaining IAQ compared with energy used for the 100% fresh air.  相似文献   
5.
6.
Branch‐and‐bound (B&B) algorithms are attractive methods for solving to optimality combinatorial optimization problems using an implicit enumeration of a dynamically built tree‐based search space. Nevertheless, they are time‐consuming when dealing with large problem instances. Therefore, pruning tree nodes (subproblems) is traditionally used as a powerful mechanism to reduce the size of the explored search space. Pruning requires to perform the bounding operation, which consists of applying a lower bound function to the subproblems generated during the exploration process. Preliminary experiments performed on the Flow‐Shop scheduling problem (FSP) have shown that the bounding operation consumes over 98% of the execution time of the B&B algorithm. In this paper, we investigate the use of graphics processing unit (GPU) computing as a major complementary way to speed up the search. We revisit the design and implementation of the parallel bounding model on GPU accelerators. The proposed approach enables data access optimization. Extensive experiments have been carried out on well‐known FSP benchmarks using an Nvidia Tesla C2050 GPU card. Compared to a CPU‐based single core execution using an Intel Core i7‐970 processor without GPU, speedups higher than 100 times faster are achieved for large problem instances. At an equivalent peak performance, GPU‐accelerated B&B is twice faster than its multi‐core counterpart. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
8.
In this paper, we revisit the design and implementation of Branch-and-Bound (B&B) algorithms for solving large combinatorial optimization problems on GPU-enhanced multi-core machines. B&B is a tree-based optimization method that uses four operators (selection, branching, bounding and pruning) to build and explore a highly irregular tree representing the solution space. In our previous works, we have proposed a GPU-accelerated approach in which only a single CPU core is used and only the bounding operator is performed on the GPU device. Here, we extend the approach (LL-GB&B) in order to minimize the CPU–GPU communication latency and thread divergence. Such an objective is achieved through a GPU-based fine-grained parallelization of the branching and pruning operators in addition to the bounding one. The second contribution consists in investigating the combination of a GPU with multi-core processing. Two scenarios have been explored leading to two approaches: a concurrent (RLL-GB&B) and a cooperative one (PLL-GB&B). In the first one, the exploration process is performed concurrently by the GPU and the CPU cores. In the cooperative approach, the CPU cores prepare and off-load to GPU pools of tree nodes using data streaming while the GPU performs the exploration. The different approaches have been extensively experimented on the Flowshop scheduling problem. Compared to a single CPU-based execution, LL-GB&B allows accelerations up to (××160) for large problem instances. Moreover, when combining multi-core and GPU, we figure out that using RLL-GB&B is not beneficial while PLL-GB&B enables an improvement up to 36% compared to LL-GB&B.  相似文献   
9.
BACKGROUND: Laccases are receiving increasing attention as potential industrial enzymes in various applications. Therefore, it is important to find inexpensive and optimized media for large‐scale commercial production. The present work aims to valorize olive mill wastewater (OMW) by its use as base media for laccases production by Trametes trogii and use of the laccases produced for decolorizing textile dyes. RESULTS: A high yield of 25 120 U L?1 of laccases was obtained at an OMW:water ratio of 80:20 enriched with 2 g L?1 of urea corresponding to initial biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total phenol concentrations of 18.4, 46 and 4.6 g L?1 respectively. The partially purified laccases resulted in 85% decolorization of blue tubantin GLL 300 and black tubantin VSF 600, and 45% decolorization of blue solophenyl after 6 h of incubation. Subsequent additions of the same dye dose to the reaction mixture resulted in a very significant decrease in laccases activity after the third dye addition. CONCLUSION: The use of OMW for laccases production is a cost effective process. The laccases produced can be applied to the decolorization of textile wastewaters. Copyright © 2009 Society of Chemical Industry  相似文献   
10.
The recent air temperature rise in Kuwait   总被引:1,自引:0,他引:1  
Recently, there is increasing concern in Kuwait regarding the frequent occurrences of harsh climate conditions with summer air temperature exceeding the 50°C mark. In particular, in the last 20 years, the maximum yearly temperature is persistently exceeding its mean value for the whole recorded period.In an effort to explain this phenomenon, a study was made on the surface air temperature records for the past three decades measured at Kuwait International Airport and at a nearby coastal station at Ras Al-Khafja. The analyses have demonstrated that the airport weather station is more influenced by urbanization than Ras Al-Khafja.The linear trend of the air temperature data for both stations consistently showed a cooling period until 1972, followed by a warming period with temperature increases in the range of 0.03–0.08°C yr−1. This warming trend is believed to be partly due to global climate change and the rest is due to man-induced local change in climate caused by urbanization. The urban warming appears to be both a daytime and night-time phenomenon, with maximum, mean and minimum temperatures showing a considerable increase. It is estimated that urban warming accounts for 25% of the maximum temperature increase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号