首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   3篇
电工技术   3篇
化学工业   17篇
机械仪表   1篇
建筑科学   5篇
能源动力   2篇
轻工业   5篇
水利工程   2篇
无线电   5篇
一般工业技术   3篇
冶金工业   4篇
原子能技术   1篇
自动化技术   17篇
  2023年   6篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   6篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1977年   2篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.
Development of artificial mechanoreceptors capable of sensing and pre-processing external mechanical stimuli is a crucial step toward constructing neuromorphic perception systems that can learn and store information. Here, bio-inspired artificial fast-adaptive (FA) and slow-adaptive (SA) mechanoreceptors with synapse-like functions are demonstrated for tactile perception. These mechanoreceptors integrate self-powered piezoelectric pressure sensors with synaptic electrolyte-gated field-effect transistors (EGFETs) featuring a reduced graphene oxide channel. The FA pressure sensor is based on a piezoelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) thin film, while the SA pressure sensor is enabled by a piezoelectric ionogel with the piezoelectric-ionic coupling effect based on P(VDF-TrFE) and an ionic liquid. Changes in post-synaptic current are achieved through the synaptic effect of the EGFET by regulating the amplitude, number, duration, and frequency of tactile stimuli (pre-synaptic pulses). These devices have great potential to serve as artificial biological mechanoreceptors for future artificial neuromorphic perception systems.  相似文献   
2.
Artificial Life and Robotics - Honey bees (Apis mellifera L.) are social insects that makes frequent use of volatile pheromone signals to collectively navigate unpredictable and unknown...  相似文献   
3.
Field studies were carried out in Urumqi River Basin in Northwest China. The study focused on experimentation on a plant algae method that was tested by taking various water chemistries into consideration. The results from a greenhouse experiment evaluated for four doses of P (0, 100, 200, and 300 μmol/L) using two ferns (30 and 60 day old) on 15 L of contaminated groundwater per plant revealed that the biomass of 30-day old ferns gained was higher than 60-day fern. As solution-P increased from 0 to 450 μmol/L, Phosphorus concentration in the fronds increased from 1.9 to 3.9 mg/kg and 1.95 to 4.0 mg/kg for 30-d and 60-d ferns respectively. This study showed that the plant algae method may be a good solution to maximize arsenic uptake in the short term under normal climatic conditions.  相似文献   
4.

The main goal of this study is to assess and compare three advanced machine learning techniques, namely, kernel logistic regression (KLR), naïve Bayes (NB), and radial basis function network (RBFNetwork) models for landslide susceptibility modeling in Long County, China. First, a total of 171 landslide locations were identified within the study area using historical reports, aerial photographs, and extensive field surveys. All the landslides were randomly separated into two parts with a ratio of 70/30 for training and validation purposes. Second, 12 landslide conditioning factors were prepared for landslide susceptibility modeling, including slope aspect, slope angle, plan curvature, profile curvature, elevation, distance to faults, distance to rivers, distance to roads, lithology, NDVI (normalized difference vegetation index), land use, and rainfall. Third, the correlations between the conditioning factors and the occurrence of landslides were analyzed using normalized frequency ratios. A multicollinearity analysis of the landslide conditioning factors was carried out using tolerances and variance inflation factor (VIF) methods. Feature selection was performed using the chi-squared statistic with a 10-fold cross-validation technique to assess the predictive capabilities of the landslide conditioning factors. Then, the landslide conditioning factors with null predictive ability were excluded in order to optimize the landslide models. Finally, the trained KLR, NB, and RBFNetwork models were used to construct landslide susceptibility maps. The receiver operating characteristics (ROC) curve, the area under the curve (AUC), and several statistical measures, such as accuracy (ACC), F-measure, mean absolute error (MAE), and root mean squared error (RMSE), were used for the assessment, validation, and comparison of the resulting models in order to choose the best model in this study. The validation results show that all three models exhibit reasonably good performance, and the KLR model exhibits the most stable and best performance. The KLR model, which has a success rate of 0.847 and a prediction rate of 0.749, is a promising technique for landslide susceptibility mapping. Given the outcomes of the study, all three models could be used efficiently for landslide susceptibility analysis.

  相似文献   
5.
ABSTRACT

Aboveground biomass (AGB) of mangrove forest plays a crucial role in global carbon cycle by reducing greenhouse gas emissions and mitigating climate change impacts. Monitoring mangrove forests biomass accurately still remains challenging compared to other forest ecosystems. We investigated the usability of machine learning techniques for the estimation of AGB of mangrove plantation at a coastal area of Hai Phong city (Vietnam). The study employed a GIS database and support vector regression (SVR) to build and verify a model of AGB, drawing upon data from a survey in 25 sampling plots and an integration of Advanced Land Observing Satellite-2 Phased Array Type L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2) dual-polarization horizontal transmitting and horizontal receiving (HH) and horizontal transmitting and vertical receiving (HV) and Sentinel-2A multispectral data. The performance of the model was assessed using root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and leave-one-out cross-validation. Usability of the SVR model was assessed by comparing with four state-of-the-art machine learning techniques, i.e. radial basis function neural networks, multi-layer perceptron neural networks, Gaussian process, and random forest. The SVR model shows a satisfactory result (R2 = 0.596, RMSE = 0.187, MAE = 0.123) and outperforms the four machine learning models. The SVR model-estimated AGB ranged between 36.22 and 230.14 Mg ha?1 (average = 87.67 Mg ha?1). We conclude that an integration of ALOS-2 PALSAR-2 and Sentinel-2A data used with SVR model can improve the AGB accuracy estimation of mangrove plantations in tropical areas.  相似文献   
6.
One of the undesirable phenomena in the surface mines, which results in various hazards for human and facilities, is flyrock. It seems that the careful study of the subject and its effects on the environment can affect the control of flyrock hazards in the studied area. Therefore, the use of intelligent models and methods which are capable of predicting and simulating the risk of flyrock can be considered as an appropriate solution in this regard. The current research was conducted using nonlinear models and Monte Carlo (MC) simulation. The data used in this study consist of 260 samples of rock thrown from a mine in Malaysia. The parameters used in these models include hole’s diameter (D), hole’s depth (HD), burden to spacing (BS), stemming (ST), maximum charge per delay (MC), and powder factor (PF). At first, multiple regression analysis (MRA) and artificial neural network (ANN) models were used in order to develop a non-linear relationship between dependent and independent parameters. The ANN model was an appropriate predictor of flyrock in the mine. Then using the best implemented model of ANN, the flyrock environmental phenomenon was simulated using MC technique. MC simulation showed a proper level of accuracy of flyrock ranges in the mine. Using this simulation, it can be concluded with 90% accuracy that the Flyrock phenomenon does not exceed 331 m. Under these conditions, this simulation can be used for various areas requiring risk assessment. Finally, a sensitive analysis was carried out on data. This analysis showed MC has the greatest effect on flyrock.  相似文献   
7.
Engineering with Computers - In the current study, various evolutionary artificial intelligence and machine learning models namely, optimized artificial neural network (ANN), genetic algorithm...  相似文献   
8.

Horizontal displacement of hydropower dams is a typical nonlinear time-varying behavior that is difficult to forecast with high accuracy. This paper proposes a novel hybrid artificial intelligent approach, namely swarm optimized neural fuzzy inference system (SONFIS), for modeling and forecasting of the horizontal displacement of hydropower dams. In the proposed model, neural fuzzy inference system is used to create a regression model whereas Particle swarm optimization is employed to search the best parameters for the model. In this work, time series monitoring data (horizontal displacement, air temperature, upstream reservoir water level, and dam aging) measured for 11 years (1999–2010) of the Hoa Binh hydropower dam were selected as a case study. The data were then split into a ratio of 70:30 for developing and validating the hybrid model. The performance of the resulting model was assessed using RMSE, MAE, and R 2. Experimental results show that the proposed SONFIS model performed well on both the training and validation datasets. The results were then compared with those derived from current state-of-the-art benchmark methods using the same data, such as support vector regression, multilayer perceptron neural networks, Gaussian processes, and Random forests. In addition, results from a Different evolution-based neural fuzzy model are included. Since the performance of the SONFIS model outperforms these benchmark models with the monitoring data at hand, the proposed model, therefore, is a promising tool for modeling horizontal displacement of hydropower dams.

  相似文献   
9.
10.
Hydrotalcite-like compound containing metal cations such as Mg2+, Al3+ and Ni2+ was characterized using Ni K-edge EXAFS and in situ Ni K-edge XANES techniques for clarifying its bonding environment around Ni2+ sites and structure changes during calcination from room temperature to 550 °C, respectively. At the fixed molar ratio of Mg/Ni/Al of 2/1/1, the results obtained from EXAFS analysis showed a slight blue shift before and after the calcination at 550 °C and a reduction in white line peak; the best fits of the two samples revealed tiny change in coordination number about 7 for Ni-O path but considerable difference for Ni-Mg(Al) path from about 4.5 to 9.5, confirming a modification from brucite like to mixed oxide structure. On the other hand, bond distances of the Ni-O and Ni-Mg paths nearly fixed at about 2.06 Å to 3.0 Å reflected stability of the cationic bond order on each plane, but partial collapse and decomposition of the interlayer formed by water molecules and anion CO 3 2? after the calcination. Linear combination fit extracted from the in situ Ni K-edge XANES also confirmed the changes along with the calcination such as slow and fast decreases of brucite fraction at 150 °C and 330 °C, respectively, in corresponding to the mixed oxide fraction increases. The achieved bonding structures were also applied to explain acid-base occurrence of the hydrotalcite-like material, especially the acid sites generated by different static charges along with the bonds. The explanation was illustrated by NH3-TPD method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号