首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学工业   4篇
能源动力   2篇
一般工业技术   4篇
自动化技术   20篇
  2023年   1篇
  2021年   2篇
  2018年   3篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有30条查询结果,搜索用时 19 毫秒
1.
Recent years have witnessed an unprecedented proliferation of social media. People around the globe author, everyday, millions of blog posts, social network status updates, etc. This rich stream of information can be used to identify, on an ongoing basis, emerging stories, and events that capture popular attention. Stories can be identified via groups of tightly coupled real-world entities, namely the people, locations, products, etc, that are involved in the story. The sheer scale and rapid evolution of the data involved necessitate highly efficient techniques for identifying important stories at every point of time. The main challenge in real-time story identification is the maintenance of dense subgraphs (corresponding to groups of tightly coupled entities) under streaming edge weight updates (resulting from a stream of user-generated content). This is the first work to study the efficient maintenance of dense subgraphs under such streaming edge weight updates. For a wide range of definitions of density, we derive theoretical results regarding the magnitude of change that a single edge weight update can cause. Based on these, we propose a novel algorithm, DynDens, which outperforms adaptations of existing techniques to this setting and yields meaningful, intuitive results. Our approach is validated by a thorough experimental evaluation on large-scale real and synthetic datasets.  相似文献   
2.
3.
Anonymizing bipartite graph data using safe groupings   总被引:1,自引:0,他引:1  
Private data often come in the form of associations between entities, such as customers and products bought from a pharmacy, which are naturally represented in the form of a large, sparse bipartite graph. As with tabular data, it is desirable to be able to publish anonymized versions of such data, to allow others to perform ad hoc analysis of aggregate graph properties. However, existing tabular anonymization techniques do not give useful or meaningful results when applied to graphs: small changes or masking of the edge structure can radically change aggregate graph properties. We introduce a new family of anonymizations for bipartite graph data, called (k, ℓ)-groupings. These groupings preserve the underlying graph structure perfectly, and instead anonymize the mapping from entities to nodes of the graph. We identify a class of “safe” (k, ℓ)-groupings that have provable guarantees to resist a variety of attacks, and show how to find such safe groupings. We perform experiments on real bipartite graph data to study the utility of the anonymized version, and the impact of publishing alternate groupings of the same graph data. Our experiments demonstrate that (k, ℓ)-groupings offer strong tradeoffs between privacy and utility.  相似文献   
4.
With the increasing importance of XML, LDAP directories, and text-based information sources on the Internet, there is an ever-greater need to evaluate queries involving (sub)string matching. In many cases, matches need to be on multiple attributes/dimensions, with correlations between the multiple dimensions. Effective query optimization in this context requires good selectivity estimates. In this paper, we use pruned count-suffix trees (PSTs) as the basic data structure for substring selectivity estimation. For the 1-D problem, we present a novel technique called MO (Maximal Overlap). We then develop and analyze two 1-D estimation algorithms, MOC and MOLC, based on MO and a constraint-based characterization of all possible completions of a given PST. For the k-D problem, we first generalize PSTs to multiple dimensions and develop a space- and time-efficient probabilistic algorithm to construct k-D PSTs directly. We then show how to extend MO to multiple dimensions. Finally, we demonstrate, both analytically and experimentally, that MO is both practical and substantially superior to competing algorithms. Received April 28, 2000 / Accepted July 11, 2000  相似文献   
5.
Distributed and Parallel Databases - Stratified random sampling (SRS) is a widely used sampling technique for approximate query processing. We consider SRS on continuously arriving data streams and...  相似文献   
6.
Bottom-up evaluation of a program-query pair in a constraint query language (CQL) starts with the facts in the database and repeatedly applies the rules of the program, in iterations, to compute new facts, until we have reached a fixpoint. Checking if a fixpoint has been reached amounts to checking if any new facts were computed in an iteration. Such a check also enhances efficiency in that subsumed facts can be discarded, and not be used to make any further derivations in subsequent iterations, if we use Semi-naive evaluation. We show that the problem of subsumption in CQLs with linear arithmetic constraints is co-NP complete, and present a deterministic algorithm, based on the divide and conquer strategy, for this problem. We also identify polynomial-time sufficient conditions for subsumption and non-subsumption in CQLs with linear arithmetic constraints. We adapt indexing strategies from spatial databases for efficiently indexing facts in such a CQL: such indexing is crucial for performance in the presence of large databases. Based on a recent algorithm by C. Lassez and J.-L. Lassez for quantifier elimination, we present an incremental version of the algorithm to check for subsumption in CQLs with linear arithmetic constraints.This work was supported by a David and Lucile Packard Foundation Fellowship in Science and Engineering, a Presidential Young Investigator Award, with matching grants from the Digital Equipment Corporation, Tandem and Xerox, and NSF Grant No. IRI-9011563.  相似文献   
7.
Keyword proximity search in XML trees   总被引:3,自引:0,他引:3  
Recent works have shown the benefits of keyword proximity search in querying XML documents in addition to text documents. For example, given query keywords over Shakespeare's plays in XML, the user might be interested in knowing how the keywords cooccur. In this paper, we focus on XML trees and define XML keyword, proximity queries to return the (possibly heterogeneous) set of minimum connecting trees (MCTs) of the matches to the individual keywords in the query. We consider efficiently executing keyword proximity queries on labeled trees (XML) in various settings: 1) when the XML database has been preprocessed and 2) when no indices are available on the XML database. We perform a detailed experimental evaluation to study the benefits of our approach and show that our algorithms considerably outperform prior algorithms and other applicable approaches.  相似文献   
8.
We develop a framework for minimizing the communication overhead of monitoring global system parameters in IP networks and sensor networks. A global system predicate is defined as a conjunction of the local properties of different network elements. A typical example is to identify the time windows when the outbound traffic from each network element exceeds a predefined threshold. Our main idea is to optimize the scheduling of local event reporting across network elements for a given network traffic load and local event frequencies. The system architecture consists of N distributed network elements coordinated by a central monitoring station. Each network element monitors a set of local properties and the central station is responsible for identifying the status of global parameters registered in the system. We design an optimal algorithm, the Partition and Rank (PAR) scheme, when the local events are independent; whereas, when they are dependent, we show that the problem is NP-complete and develop two efficient heuristics: the PAR for dependent events (PAR-D) and Adaptive (Ada) algorithms, which adapt well to changing network conditions, and outperform the current state of the art techniques in terms of communication cost.  相似文献   
9.
In this paper, we present an algorithm for finding the k highest-ranked (or Top-k) answers in a distributed network. A Top-K query returns the subset of most relevant answers, in place of all answers, for two reasons: (i) to minimize the cost metric that is associated with the retrieval of all answers; and (ii) to improve the recall and the precision of the answer-set, such that the user is not overwhelmed with irrelevant results. Our study focuses on multi-hop distributed networks in which the data is accessible by traversing a network of nodes. Such a setting captures very well the computation framework of emerging Sensor Networks, Peer-to-Peer Networks and Vehicular Networks. We present the Threshold Join Algorithm (TJA), an efficient algorithm that utilizes a non-uniform threshold on the queried attribute in order to minimize the transfer of data when a query is executed. Additionally, TJA resolves queries in the network rather than in a centralized fashion which further minimizes the consumption of bandwidth and delay. We performed an extensive experimental evaluation of our algorithm using a real testbed of 75 workstations along with a trace-driven experimental methodology. Our results indicate that TJA requires an order of magnitude less communication than the state-of-the-art, scales well with respect to the parameter k and the network topology.  相似文献   
10.
This work introduces new algorithms for processing top-$k$ queries in uncertain databases, under the generally adopted model of x-relations. An x-relation consists of a number of x-tuples, and each x-tuple randomly instantiates into one tuple from one or more alternatives. Soliman et al.~cite{soliman07} first introduced the problem of top-$k$ query processing in uncertain databases and proposed various algorithms to answer such queries. Under the x-relation model, our new results significantly improve the state of the art, in terms of both running time and memory usage. In the single-alternative case, our new algorithms are 2 to 3 orders of magnitude faster than the previous algorithms. In the multi-alternative case, the improvement is even more dramatic: while the previous algorithms have exponential complexity in both time and space, our algorithms run in near linear or low polynomial time. Our study covers both types of top-$k$ queries proposed in cite{soliman07}. We provide both the theoretical analysis and an extensive experimental evaluation to demonstrate the superiority of the new approaches over existing solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号