首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
电工技术   1篇
自动化技术   18篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有19条查询结果,搜索用时 171 毫秒
1.
2.
Computational Visual Media - We present a novel approach to automatically recover, from a small set of partially overlapping spherical images, an indoor structure representation in terms of a 3D...  相似文献   
3.
A new algorithm for the integration of partially overlapping range images into a triangular mesh is presented. The algorithm consists of three main steps: it locates the intersections between the range surfaces and a reference grid chosen by the user, then merges all nearly coincident and redundant intersections according to a proximity criterion, and, finally, reconstructs the merged surface(s) from the filtered intersection set. Compared with previous methods, which adopt a volumetric approach, our algorithm shows lower computational costs and improves the accuracy of the surfaces produced. It takes into account the quality of the input measurements and is able to patch small holes corresponding to the parts of the 3D scanned object that were not observed by the acquisition device. The algorithm has been tested on several datasets of range maps; graphical and numeric results are reported.  相似文献   
4.
Creating high-level structured 3D models of real-world indoor scenes from captured data is a fundamental task which has important applications in many fields. Given the complexity and variability of interior environments and the need to cope with noisy and partial captured data, many open research problems remain, despite the substantial progress made in the past decade. In this survey, we provide an up-to-date integrative view of the field, bridging complementary views coming from computer graphics and computer vision. After providing a characterization of input sources, we define the structure of output models and the priors exploited to bridge the gap between imperfect sources and desired output. We then identify and discuss the main components of a structured reconstruction pipeline, and review how they are combined in scalable solutions working at the building level. We finally point out relevant research issues and analyze research trends.  相似文献   
5.
We present a novel and light‐weight approach to capture and reconstruct structured 3D models of multi‐room floor plans. Starting from a small set of registered panoramic images, we automatically generate a 3D layout of the rooms and of all the main objects inside. Such a 3D layout is directly suitable for use in a number of real‐world applications, such as guidance, location, routing, or content creation for security and energy management. Our novel pipeline introduces several contributions to indoor reconstruction from purely visual data. In particular, we automatically partition panoramic images in a connectivity graph, according to the visual layout of the rooms, and exploit this graph to support object recovery and rooms boundaries extraction. Moreover, we introduce a plane‐sweeping approach to jointly reason about the content of multiple images and solve the problem of object inference in a top‐down 2D domain. Finally, we combine these methods in a fully automated pipeline for creating a structured 3D model of a multi‐room floor plan and of the location and extent of clutter objects. These contribution make our pipeline able to handle cluttered scenes with complex geometry that are challenging to existing techniques. The effectiveness and performance of our approach is evaluated on both real‐world and synthetic models.  相似文献   
6.
In this paper we propose a novel technique to perform real-time rendering of translucent inhomogeneous materials, one of the most well-known problems of computer graphics. The developed technique is based on an adaptive volumetric point sampling, done in a preprocessing stage, which associates to each sample the optical depth for a predefined set of directions. This information is then used by a rendering algorithm that combines the object’s surface rasterization with a ray tracing algorithm, implemented on the graphics processor, to compose the final image. This approach allows us to simulate light scattering phenomena for inhomogeneous isotropic materials in real time with an arbitrary number of light sources. We tested our algorithm by comparing the produced images with the result of ray tracing and showed that the technique is effective.  相似文献   
7.
Refurbishing Michelangelo's David has produced several useful restoration guidelines. These guidelines can help restorers select the proper procedures for the task and, objectively, assess the results. The work also has helped us develop innovative ways to process and visualize 3D data in cultural heritage projects. The David restoration was an ideal test bed. We try various methodologies to support restorers and scientists with visualization tools based on 3D digital models. 3D digital models can be a tool for undertaking specific investigations, or as supporting media for archiving and integrating the restoration-related information.  相似文献   
8.
We introduce a GPU-friendly technique that efficiently exploits the highly structured nature of urban environments to ensure rendering quality and interactive performance of city exploration tasks. Central to our approach is a novel discrete representation, called BlockMap, for the efficient encoding and rendering of a small set of textured buildings far from the viewer. A BlockMap compactly represents a set of textured vertical prisms with a bounded on-screen footprint. BlockMaps are stored into small fixed size texture chunks and efficiently rendered through GPU raycasting. Blockmaps can be seamlessly integrated into hierarchical data structures for interactive rendering of large textured urban models. We illustrate an efficient output-sensitive framework in which a visibility-aware traversal of the hierarchy renders components close to the viewer with textured polygons and employs BlockMaps for far away geometry. Our approach provides a bounded size far distance representation of cities, naturally scales with the improving shader technology, and outperforms current state of the art approaches. Its efficiency and generality is demonstrated with the interactive exploration of a large textured model of the city of Paris on a commodity graphics platform.  相似文献   
9.
Minimizing user intervention in registering 2D images to 3D models   总被引:1,自引:0,他引:1  
This paper proposes a novel technique to speed up the registration of 2D images to 3D models. This problem often arises in the process of digitalization of real objects, because pictures are often taken independently from the 3D geometry. Although there are a number of methods for solving the problem of registration automatically, they all need some further assumptions, so in the most general case the process still requires the user to provide some information about how the image corresponds to geometry, for example providing point-to-point correspondences. We propose a method based on a graph representation where the nodes represent the 2D photos and the 3D object, and arcs encode correspondences, which are either image–to–geometry or image–to–image point pairs. This graph is used to infer new correspondences from the ones specified by the user and from successful alignment of single images and to factually encode the state of the registration process. After each action performed by the user, our system explores the states space to find the shortest path from the current state to a state where all the images are aligned, i.e. a final state and, therefore, guides the user in the selection of further alignment actions for a faster completion of the job. Experiments on empirical data are reported to show the effectiveness of the system in reducing the user workload considerably.  相似文献   
10.
Performing a really interactive and physically-based simulation of complex soft objects is still an open problem in computer animation/simulation. Given the application domain of virtual surgery training, a complete model should be quite realistic, interactive and should enable the user to modify the topology of the objects. Recent papers propose the adoption of multiresolution techniques to optimize time performance by representing at high resolution only the object parts considered more important or critical. The speed up obtainable at simulation time are counterbalanced by the need of a preprocessing phase strongly dependent on the topology of the object, with the drawback that performing dynamic topology modification becomes a prohibitive issue. In this paper we present an approach that couples multiresolution and topological modifications, based on the adoption of a particle systems approach to the physical simulation. Our approach is based on a tetrahedral decomposition of the space, chosen both for its suitability to support a particle system and for the ready availability of many techniques recently proposed for the simplification and multiresolution management of 3D simplicial decompositions. The multiresolution simulation system is designed to ensure the required speedup and to support dynamic changes of the topology, e.g. due to cuts or lacerations of the represented tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号