首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
自动化技术   3篇
  2020年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
In this paper, an approach to control a 6-DoF stereo camera for the purpose of actively tracking the face of a human observer in the context of Human-Robot Interaction (HRI) is proposed. The main objective in the presented work is to cope with the critical time-delay introduced by the computer vision algorithms used to acquire the feedback variable within the control system. In the studied HRI architecture, the feedback variable is represented by the 3D position of a human subject. We proposed a predictive control method which is able to handle the high time-delay inserted by the vision elements into the control system of the stereo camera. Also, along with the predictive control approach, a novel 3D nose detection algorithm is suggested for the computation of the feedback variable. The performance of the implemented platform is given through experimental results.  相似文献   
2.
The last decade witnessed increasingly rapid progress in self‐driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence (AI). The objective of this paper is to survey the current state‐of‐the‐art on deep learning technologies used in autonomous driving. We start by presenting AI‐based self‐driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration, and motion control algorithms. We investigate both the modular perception‐planning‐action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources, and computational hardware. The comparison presented in this survey helps gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices.  相似文献   
3.
Robust camera pose and scene structure analysis for service robotics   总被引:1,自引:0,他引:1  
Successful path planning and object manipulation in service robotics applications rely both on a good estimation of the robot’s position and orientation (pose) in the environment, as well as on a reliable understanding of the visualized scene. In this paper a robust real-time camera pose and a scene structure estimation system is proposed. First, the pose of the camera is estimated through the analysis of the so-called tracks. The tracks include key features from the imaged scene and geometric constraints which are used to solve the pose estimation problem. Second, based on the calculated pose of the camera, i.e. robot, the scene is analyzed via a robust depth segmentation and object classification approach. In order to reliably segment the object’s depth, a feedback control technique at an image processing level has been used with the purpose of improving the robustness of the robotic vision system with respect to external influences, such as cluttered scenes and variable illumination conditions. The control strategy detailed in this paper is based on the traditional open-loop mathematical model of the depth estimation process. In order to control a robotic system, the obtained visual information is classified into objects of interest and obstacles. The proposed scene analysis architecture is evaluated through experimental results within a robotic collision avoidance system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号