首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
自动化技术   7篇
  2023年   1篇
  2022年   1篇
  2019年   2篇
  2016年   2篇
  2013年   1篇
排序方式: 共有7条查询结果,搜索用时 828 毫秒
1
1.
In this paper, we define a new class of queries, the top-k multiple-type integrated query (simply, top-k MULTI query). It deals with multiple data types and finds the information in the order of relevance between the query and the object. Various data types such as spatial, textual, and relational data types can be used for the top-k MULTI query. The top-k MULTI query distinguishes itself from the traditional top-k query in that the component scores to calculate final scores are determined dependent of the query. Hence, each component score is calculated only when the query is given for each data type rather than being calculated apriori as in the top-k query. As a representative instance, the traditional top-k spatial keyword query is an instance of the top-k MULTI query. It deals with the spatial data type and text data type and finds the information based on spatial proximity and textual relevance between the query and the object, which is determined only when the query is given. In this paper, we first define the top-k MULTI query formally and define a new specific instance for the top-k MULTI query, the top-k spatial-keyword-relational(SKR) query, by integrating the relational data type into the traditional top-k spatial keyword query. Then, we investigate the processing approaches for the top-k MULTI query. We discuss the scalability of those approaches as new data types are integrated. We also devise the processing methods for the top-k SKR query. Finally, through extensive experiments on the top-k SKR query using real and synthetic data sets, we compare efficiency of the methods in terms of the query performance and storage.  相似文献   
2.
There has been a lot of research on MapReduce for big data analytics. This new class of systems sacrifices DBMS functionality such as query languages, schemas, or indexes in order to maximize scalability and parallelism. However, as high functionality of the DBMS is considered important for big data analytics as well, there have been a lot of efforts to support DBMS functionality in MapReduce. HadoopDB is the only work that directly utilizes the DBMS for big data analytics in the MapReduce framework, taking advantage of both the DBMS and MapReduce. However, HadoopDB does not support sharability for the entire data since it stores the data into multiple nodes in a shared-nothing manner—i.e., it partitions a job into multiple tasks where each task is assigned to a fragment of data. Due to this limitation, HadoopDB cannot effectively process queries that require internode communication. That is, HadoopDB needs to re-load the entire data to process some queries (e.g., 2-way joins) or cannot support some complex queries (e.g., 3-way joins). In this paper, we propose a new notion of the DFS-integrated DBMS where a DBMS is tightly integrated with the distributed file system (DFS). By using the DFS-integrated DBMS, we can obtain sharability of the entire data. That is, a DBMS process in the system can access any data since multiple DBMSs are run on an integrated storage system in the DFS. To process big data analytics in parallel, our approach use the MapReduce framework on top of a DFS-integrated DBMS. We call this framework PARADISE. In PARADISE, we employ a job splitting method that logically splits a job based on the predicate in the integrated storage system. This contrasts with physical splitting in HadoopDB. We also propose the notion of locality mapping for further optimization of logical splitting. We show that PARADISE effectively overcomes the drawbacks of HadoopDB by identifying the following strengths. (1) It has a significantly faster (by up to 6.41 times) amortized query processing performance since it obviates the need to re-load data required in HadoopDB. (2) It supports query types more complex than the ones supported by HadoopDB.  相似文献   
3.
A top-k spatial keyword query returns k objects having the highest (or lowest) scores with regard to spatial proximity as well as text relevancy. Approaches for answering top-k spatial keyword queries can be classified into two categories: the separate index approach and the hybrid index approach. The separate index approach maintains the spatial index and the text index independently and can accommodate new data types. However, it is difficult to support top-k pruning and merging efficiently at the same time since it requires two different orders for clustering the objects: the first based on scores for top-k pruning and the second based on object IDs for efficient merging. In this paper, we propose a new separate index method called Rank-Aware Separate Index Method (RASIM) for top-k spatial keyword queries. RASIM supports both top-k pruning and efficient merging at the same time by clustering each separate index in two different orders through the partitioning technique. Specifically, RASIM partitions the set of objects in each index into rank-aware (RA) groups that contain the objects with similar scores and applies the first order to these groups according to their scores and the second order to the objects within each group according to their object IDs. Based on the RA groups, we propose two query processing algorithms: (i) External Threshold Algorithm (External TA) that supports top-k pruning in the unit of RA groups and (ii) Generalized External TA that enhances the performance of External TA by exploiting special properties of the RA groups. RASIM is the first research work that supports top-k pruning based on the separate index approach. Naturally, it keeps the advantages of the separate index approach. In addition, in terms of storage and query processing time, RASIM is more efficient than the IR-tree method, which is the prevailing method to support top-k pruning to date and is based on the hybrid index approach. Experimental results show that, compared with the IR-tree method, the index size of RASIM is reduced by up to 1.85 times, and the query performance is improved by up to 3.22 times.  相似文献   
4.
Question-answering (QA) models find answers to a given question. The necessity of automatically finding answers is increasing because it is very important and challenging from the large-scale QA data sets. In this paper, we deal with the QA pair matching approach in QA models, which finds the most relevant question and its recommended answer for a given question. Existing studies for the approach performed on the entire dataset or datasets within a category that the question writer manually specifies. In contrast, we aim to automatically find the category to which the question belongs by employing the text classification model and to find the answer corresponding to the question within the category. Due to the text classification model, we can effectively reduce the search space for finding the answers to a given question. Therefore, the proposed model improves the accuracy of the QA matching model and significantly reduces the model inference time. Furthermore, to improve the performance of finding similar sentences in each category, we present an ensemble embedding model for sentences, improving the performance compared to the individual embedding models. Using real-world QA data sets, we evaluate the performance of the proposed QA matching model. As a result, the accuracy of our final ensemble embedding model based on the text classification model is 81.18%, which outperforms the existing models by 9.81%∼14.16% point. Moreover, in terms of the model inference speed, our model is faster than the existing models by 2.61∼5.07 times due to the effective reduction of search spaces by the text classification model.  相似文献   
5.

With increasing numbers of GPS-equipped mobile devices, we are witnessing a deluge of spatial information that needs to be effectively and efficiently managed. Even though there are several distributed spatial data processing systems such as GeoSpark (Apache Sedona), the effects of underlying storage engines have not been well studied for spatial data processing. In this paper, we evaluate the performance of various distributed storage engines for processing large-scale spatial data using GeoSpark, a state-of-the-art distributed spatial data processing system running on top of Apache Spark. For our performance evaluation, we choose three distributed storage engines having different characteristics: (1) HDFS, (2) MongoDB, and (3) Amazon S3. To conduct our experimental study on a real cloud computing environment, we utilize Amazon EMR instances (up to 6 instances) for distributed spatial data processing. For the evaluation of big spatial data processing, we generate data sets considering four kinds of various data distributions and various data sizes up to one billion point records (38.5GB raw size). Through the extensive experiments, we measure the processing time of storage engines with the following variations: (1) sharding strategies in MongoDB, (2) caching effects, (3) data distributions, (4) data set sizes, (5) the number of running executors and storage nodes, and (6) the selectivity of queries. The major points observed from the experiments are summarized as follows. (1) The overall performance of MongoDB-based GeoSpark is degraded compared to HDFS- and S3-based GeoSpark in our experimental settings. (2) The performance of MongoDB-based GeoSpark is relatively improved in large-scale data sets compared to the others. (3) HDFS- and S3-based GeoSpark are more scalable to running executors and storage nodes compared to MongoDB-based GeoSpark. (4) The sharding strategy based on the spatial proximity significantly improves the performance of MongoDB-based GeoSpark. (5) S3- and HDFS-based GeoSpark show similar performances in all the environmental settings. (6) Caching in distributed environments improves the overall performance of spatial data processing. These results can be usefully utilized in decision-making of choosing the most adequate storage engine for big spatial data processing in a target distributed environment.

  相似文献   
6.
Yun  Tae-Seob  Whang  Kyu-Young  Kwon  Hyuk-Yoon  Kim  Jun-Sung  Song  Il-Yeol 《World Wide Web》2019,22(6):2469-2470
World Wide Web - After our paper was published on-line, the authors have learned existence of the paper by Feuerstein et al. [Feuerstein 2009].  相似文献   
7.
Yun  Tae-Seob  Whang  Kyu-Young  Kwon  Hyuk-Yoon  Kim  Jun-Sung  Song  Il-Yeol 《World Wide Web》2019,22(6):2437-2467

We propose two-dimensional indexing—a novel in-memory indexing architecture that operates over distributed memory of a massively-parallel search engine. The goal of two-dimensional indexing is to provide a one-integrated-memory view as in a single node system using one large integrated memory. In two-dimensional indexing, we partition the entire index into n× m fragments and distribute them over the memories of multiple nodes in such a way that each fragment is entirely stored in main memory of one node. The proposed architecture is not only scalable as it uses a scaled-out shared-nothing architecture but also is capable of achieving low query response time as it processes queries in main memory. We also propose the concept of the one-memory point, which is the amount of the memory space required to completely store the entire index in main memory providing a one-integrated-memory view. We first prove the effectiveness of two-dimensional indexing with single-keyword queries, and then, extend the notion so as to be able to handle multiple-keyword queries. To handle multiple-keyword queries, we adopt pre-join that materializes a multiple-keyword query a priori as well as a new notion of semi-memory join that obviates extensive communication overhead to perform join across multiple nodes. In experiments using the real-life search query set over a database consisting of 100 million Web documents crawled, we show that two-dimensional indexing can effectively provide a one-integrated-memory view without too much of additional memory compared with the single node system using one large integrated memory. We also show that, with a six-node prototype, in an ideal case, it significantly improves the query processing performance over a disk-based search engine with an equivalent amount of in-memory buffer but without two-dimensional indexing — by up to 535.54 times. This improvement is expected to get larger as the system is scaled-out with a larger number of machines.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号