首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
化学工业   3篇
机械仪表   3篇
建筑科学   1篇
能源动力   3篇
无线电   5篇
一般工业技术   6篇
冶金工业   1篇
自动化技术   5篇
  2023年   1篇
  2021年   4篇
  2019年   5篇
  2018年   1篇
  2017年   3篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2002年   1篇
排序方式: 共有27条查询结果,搜索用时 281 毫秒
1.
Although there are many patients with brain tumors worldwide, there are numerous difficulties in overcoming brain tumors. Among brain tumors, glioblastoma, with a 5-year survival rate of 5.1%, is the most malignant. In addition to surgical operations, chemotherapy and radiotherapy are generally performed, but the patients have very limited options. Temozolomide is the most commonly prescribed drug for patients with glioblastoma. However, it is difficult to completely remove the tumor with this drug alone. Therefore, it is necessary to discuss the potential of anticancer drugs, other than temozolomide, against glioblastomas. Since the discovery of cisplatin, platinum-based drugs have become one of the leading chemotherapeutic drugs. Although many studies have reported the efficacy of platinum-based anticancer drugs against various carcinomas, studies on their effectiveness against brain tumors are insufficient. In this review, we elucidated the anticancer effects and advantages of platinum-based drugs used in brain tumors. In addition, the cases and limitations of the clinical application of platinum-based drugs are summarized. As a solution to overcome these obstacles, we emphasized the potential of a novel approach to increase the effectiveness of platinum-based drugs.  相似文献   
2.
Identifying the Bloch sphere with the Riemann sphere (the extended complex plane), we obtain relations between single qubit unitary operations and Möbius transformations on the extended complex plane. PACS: 03.67.-a, 03.67.Lx, 03.67.Hk  相似文献   
3.
The solid‐state packing and polymer orientation relative to the substrate are key properties to control in order to achieve high charge carrier mobilities in organic field effect transistors (OFET). Intuitively, shorter side chains are expected to yield higher charge carrier mobilities because of a denser solid state packing motif and a higher ratio of charge transport moieties. However our findings suggest that the polymer chain orientation plays a crucial role in high‐performing diketopyrrolopyrrole‐based polymers. By synthesizing a series of DPP‐based polymers with different branched alkyl side chain lengths, it is shown that the polymer orientation depends on the branched alkyl chain lengths and that the highest carrier mobilities are obtained only if the polymer adopts a mixed face‐on/edge‐on orientation, which allows the formation of 3D carrier channels in an otherwise edge‐on‐oriented polymer chain network. Time‐of‐flight measurements performed on the various polymer films support this hypothesis by showing higher out‐of‐plane carrier mobilities for the partially face‐on‐oriented polymers. Additionally, a favorable morphology is mimicked by blending a face‐on polymer into an exclusively edge‐on oriented polymer, resulting in higher charge carrier mobilities and opening up a new avenue for the fabrication of high performing OFET devices.  相似文献   
4.
Designing energy storage devices from thick carbon electrodes with high areal/volumetric energy density via a simple and green way is very attractive but still challenging. Cellulose, as an excellent precursor for thick carbon electrodes with abundant sources and low cost, is usually activated by a chemical activator and pyrolysis route to achieve high electrochemical performance. However, there are still some problems to be addressed, such as the harsh activation conditions, easy collapse of porous structures, and the high cost. Herein, a 3D self-supporting thick carbon electrode derived from wood-based cellulose is proposed for high areal and volumetric energy density of supercapacitor from a mild, simple, and green enzymolysis treatment. Benefiting from the high specific surface area (1418 m2 g−1) and abundant active sites on the surface of wood-derived hierarchically porous structures and enzymolysis-induced micropores and mesopores, the assembled symmetry supercapacitor from the thick carbon electrode can realize the high areal/volumetric energy density of 0.21 mWh cm−2/0.99 mWh cm−3 with excellent stability of 86.58% after 15 000 long-term cycles at 20 mA cm−2. Significantly, the simple and universal strategy to design material with high specific surface area, provides a new research idea for realizing multi-functional application.  相似文献   
5.
A serpentine flow channel can be considered as neighboring channels connected in series, and is one of the most common and practical channel layouts for polymer electrolyte membrane (PEM) fuel cells, as it ensures the removal of liquid water produced in a cell with good performance and acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross directly to the neighboring channel via the porous gas diffusion layer (GDL) due to the high‐pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area resulting in a substantially lower amount of pressure drop in an actual PEM fuel cell compared with the case without cross flow. In this study, an analytical solution is obtained for the cross flow in a PEM fuel cell with a serpentine flow channel based on the assumption that the velocity of cross flow is linearly distributed in the GDL between two successive U‐turns. The analytical solution predicts the amount of pressure drop and the average volume flow rate in the flow channel and the GDL. The solution is validated over a wide range of the thickness and permeability of the GDL by comparing the results with experimental measurements and 3‐D numerical simulations in literature. Excellent agreement is obtained for the permeability less than 10?9 m2, which covers the typical permeability values of the GDLs in actual PEM fuel cells. The solution presents an accurate and efficient estimation for cross flow providing a useful tool for the design and optimization of PEM fuel cells with serpentine flow channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
We propose a new spatial feature extraction method for supervised classification of satellite images with high spatial resolution. The proposed shape–size index (SSI) feature combines homogeneous areas using spectral similarity between one central pixel and its neighbouring pixels. A spatial index considers the shape and size of the homogeneous area, and suitable spatial features are parametrically selected. The generated SSI feature is integrated with the original high resolution multispectral bands to improve the overall classification accuracy. A support vector machine (SVM) is employed as a classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 (Korea Multipurpose Satellite 2), QuickBird-2 and IKONOS-2 high resolution satellite images are used. The experiments show that the SSI algorithm leads to a notable increase in classification accuracy over the grey level co-occurrence matrix (GLCM) and pixel shape index (PSI) algorithms, and an increase when compared with using multispectral bands only.  相似文献   
7.
The cross flow from channel to channel through gas diffusion layer (GDL) under the land could play an important role for water removal in proton exchange membrane (PEM) fuel cells. In this study, characteristics of liquid water removal from GDL have been investigated experimentally, through measuring unsteady pressure drop in a cell which has the GDL initially wet with liquid water. The thickness of GDL is carefully controlled by inserting various thicknesses of metal shims between the plates. It has been found that severe compression of GDL could result in excessive pressure drop from channel inlet to channel outlet. Removing liquid water from GDL by cross flow is difficult for GDL with high compression levels and for low inlet air flow rates. However, effective water removal can still be achieved at high compression levels of GDL if the inlet air flow rate is high. Based on different compressed GDL thicknesses, different GDL porosities and permeabilities were calculated and their effects on the characteristics of liquid water removal from GDL were evaluated. Visualization of liquid water transport has been conducted by using transparent flow channel, and liquid water removal from GDL under the land was observed for all the tested inlet air flow rates, which confirms that cross flow is practically effective to remove the liquid water accumulated in GDL under the land area.  相似文献   
8.
We study the question of converting initially Gaussian states into non-Gaussian ones by two- and three-photon subtraction to improve non-classical properties of the conditional optical fields. We show the photon subtraction may effectively generate non-Gaussian states only in case of small values of the mean values of the position and momentum operators. In particular, the photon-subtracted state can be made arbitrary close to Gaussian state in limiting case of large initial amplitude of displacement. Use of initial displacement in input Gaussian states opens wider prospects to manipulate them. In particular, realization of probabilistic Hadamard gate with input Gaussian states is discussed where photon subtraction is motive force able unevenly to increase measure of non-classicality of the output state. Subtraction of larger number of photons enables to increase fidelity and non-classical measure of the conditional states.  相似文献   
9.
Brush-shaped ZnO heteronanostructures were synthesized using a newly designed thermal-assisted pulsed laser deposition (T-PLD) system that combines the advantages of pulsed laser deposition (PLD) and a hot furnace system. Branched ZnO nanostructures were successfully grown onto CVD-grown backbone nanowires by T-PLD. Although ZnO growth at 300 °C resulted in core-shell structures, brush-shaped hierarchical nanostructures were formed at 500-600 °C. Materials properties were studied via photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. The enhanced photocurrent of a SnO(2)-ZnO heterostructures device by irradiation with 365 nm wavelength ultraviolet (UV) light was also investigated by the current-voltage characteristics.  相似文献   
10.
A serpentine flow channel is one of the most common and practical channel layouts for a polymer electrolyte membrane (PEM) fuel cell since it ensures the removal of water produced in a cell with acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross to neighboring channel via the porous gas diffusion layer due to the high pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area altering reactant flow in the flow channel so that the resultant pressure and flow distributions are substantially different from that without considering cross flow, even though this cross flow has largely been ignored in previous studies. In this work, a numerical and experimental study has been carried out to investigate the cross flow in a PEM fuel cell. Experimental measurements revealed that the pressure drop in a PEM fuel cell is significantly lower than that without cross flow. Three-dimensional numerical simulation has been performed for wide ranges of flow rate, permeability and thickness of gas diffusion layer to analyze the effects of those parameters on the resultant cross flow and the pressure drop of the reactant streams. Considerable amount of cross flow through gas diffusion layer has been found in flow simulation and its effect on pressure drop becomes more significant as the permeability and the thickness of gas diffusion layer are increased. The effects of this phenomenon are also crucial for effective water removal from the porous electrode structure and for estimating pumping energy requirement in a PEM fuel cell, it cannot be neglected for the analysis, simulation, design, operation and performance optimization of practical PEM fuel cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号