首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
能源动力   1篇
一般工业技术   1篇
自动化技术   3篇
  2021年   1篇
  2014年   3篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The Journal of Supercomputing - Data warehouses are very large databases and play key role in intelligent decision making in enterprises. The bitmap join indexes selection problem is crucial in the...  相似文献   
2.
Data warehouses are very large databases usually designed using the star schema. Queries defined on data warehouses are generally complex due to join operations involved. The performance of star schema queries in data warehouses is highly critical and its optimization is hard in general. Several query performance optimization methods exist, such as indexes and table partitioning. In this paper, we propose a new approach based on binary particle swarm optimization for solving the bitmap join index selection problem in data warehouses. This approach selects the optimal set of bitmap join indexes based on a mathematical cost model. Several experiments are performed to demonstrate the effectiveness of the proposed method on the bitmap join index selection problem. Further testing of the method is performed using a database environment specific cost function. The binary particle swarm optimization is found to be more effective than both the genetic algorithm and data mining based approaches.  相似文献   
3.
For homogeneous isotropic turbulence approximated by grid turbulence, velocity and temperature fluctuations decay under the effects of viscosity and thermal diffusivity of the fluid. In the self-similar region of grid flow, there is no mean shear and no turbulence production, and the decay rate is well represented by a power law; this is supported by the present measurements in three different grid flows and by previously published data for passive-grid turbulence obtained over different ranges of streamwise distance and/or Reynolds number. The grid flow is slightly heated so that temperature acts as a passive scalar. From dimensional analysis and empirical power-law correlations, relations for basic flow parameters, such as the Kolmogorov, Taylor, and Corrsin microscales, and the Reynolds and Péclet numbers, are established as functions of the normalized streamwise distance downstream of the grid. With these relations, it is possible to determine the flow parameters for a specific passive-grid geometry or, more generally, a specific set of initial conditions.  相似文献   
4.
The low-Reynolds number flow around two square cylinders placed side-by-side is investigated using the lattice Boltzmann method (LBM). The effects of the gap ratio s/d (s is the separation between the cylinders and d is the characteristic dimension) on the flow are studied. These simulations reveal the existence of regimes with either synchronized or non-synchronized vortex-shedding, with transition occurring at s/d ≈ 2, which is larger than for circular cylinders. Detailed results are presented at Re = 73 for s/d = 2.5 and 0.7 corresponding to the synchronized and flip-flop regimes, respectively. Vortex-shedding from the cylinder occurs either in-phase or in-antiphase in the synchronized regime. However, linear stochastic estimate (LSE) calculations show that in-phase locking is the predominant mode. LSE is also employed to educe the underlying modes in the flip-flop regime, where evidence for both in-phase and anti-phase locked vortices is found, indicating that this regime is in a quasi-stable state between these two modes. The merging of the wakes, which is gradual for the synchronized regime, occurs rapidly in the flip-flop regime. The mean pressure on the upstream surface is symmetric and asymmetric for the synchronized and flip-flop regimes, respectively. Differences in results between the two regimes are interpreted in terms of the interaction of the jet formed between the cylinders with the adjoining wakes, the strength of this interaction depending on the spacing.  相似文献   
5.
In this work, a numerical model is developed to investigate the influence of fluid flow and heat transfer on the thermo-mechanical response of a cracked porous media. The fluid flow, governed by the Darcy’s law, is discretized with the nonconforming finite element method. Time splitting is used with the energy conservation equation to solve the fluid and the solid phases separately. A combination of Discontinuous Galerkin (DG) and multi-point flux approximation methods is used to solve the advection-diffusion heat transfer equation in the fluid phase. While the conductive heat transfers equation in the solid phase is solved using the eXtended finite element method (XFEM) to better handle the temperature discontinuities and singularities caused by the cracks. Further, the resulted temperature is used as body force to solve the thermo-mechanical problem using the XFEM. In the post processing stage, the thermal stress intensity factor is computed using the interaction integral technique at each time step and used to validate the obtained results. A good agreement was found when the results were compared with the existing ones in the literature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号