首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
建筑科学   1篇
自动化技术   1篇
  2020年   1篇
  1998年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
This paper presents parallel algorithms for computing multi-dimensional wavelet transforms on both shared memory and distributed memory machines. Traditional data partitioning methods for n-dimensional Discrete Wavelet Transforms (DWTs) call for data redistribution once a one dimensional wavelet transform is computed along each dimension. To avoid the data communication inherent in this redistribution, two new partitioning methods called CRBP (Communication Reduced Block Partitioning) and CRLP (Communication Reduced Layer Partitioning) are proposed. The efficiency of the algorithms is compared through several examples implemented on a cluster of SGI workstations. Two kinds of parallel approaches are used to compute multi-dimensional wavelet transforms on shared memory machines: homogeneous parallelism, and heterogeneous parallelism. Homogeneous parallelism uses traditional data partitioning while heterogeneous parallelism uses the CRBP approach. The effectiveness of these approaches is demonstrated through several examples implemented on an SGI Power Challenge. The paper discusses the effectiveness of each of the approaches on the two kinds of architectures.  相似文献   
2.
ABSTRACT

The present investigation explores the effect of dairy scum oil methyl ester (DSOME) blends and ethanol additive on TV1 Kirloskar diesel engine performance, combustion and emission characteristics. From the experimental study, it is concluded that DSOME-B20 (20% dairy scum biodiesel?+?80% diesel) has shown appreciable performance and lower HC and CO emissions among all other blends. Hence DSOME-B20 is optimised as best fuel blend and it is carried for further investigations to study the effect of bio-ethanol additive on diesel engine performance. From the study it apparent that diesel engine operated with ethanol additive and 20% dairy scum biodiesel blended fuels shown the satisfactorily improved emission characteristics when compared to petroleum diesel fuel operation. Finally, from the experimental investigation, it concludes that addition of ethanol shown the slightly higher HC, CO emission and improved BTE, BSFC, NOx and CO2 than sole B20 biodiesel blend. Among all three (3%, 6% and 9%) ethanol additive ratios, E6% (6%-ethanol with B20) ethanol additive exhibits slightly better BTE, BSFC, cylinder pressure and heat release rate hence 6% ethanol additive with B20 biodiesel blend would furnish beneficial effects in the diesel engine.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号