首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
电工技术   1篇
化学工业   7篇
建筑科学   4篇
轻工业   1篇
水利工程   3篇
无线电   6篇
一般工业技术   2篇
冶金工业   5篇
自动化技术   7篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1990年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有36条查询结果,搜索用时 625 毫秒
1.
The ocean covers about two-thirds of the earth and has a great effect on the future existence of all human beings. About 37% of the world’s population lives within 100 km of the ocean. The ocean is generally overlooked as we focus our attention on land and atmospheric issues; we have not been able to explore the full depths of the ocean and its abundant living and non-living resources. For example, it is estimated that there are about 2,000 billion tons of manganese nodules on the floor of the Pacific Ocean near the Hawaiian Islands. We discovered, by using manned submersibles, that a large amount of carbon dioxide comes from the seafloor and extraordinary groups of organisms live in hydrothermal vent areas. Marine robots including unmanned surface vehicles and unmanned underwater vehicles can help us better understand marine and other environmental issues, protect the ocean resources of the earth from pollution, and efficiently utilize them for human welfare. This paper briefly presents some exemplary models of recent developments in marine robots in different application areas.  相似文献   
2.
The industrial feasibility of large-sized, photocatalytic building materials was assessed by the adoption of suitable, fast and environmental friendly technological solutions. Nanostructured TiO2 coatings can be realized by ink-jet or roller printing of nano-anatase suspensions by modifying, in one single step, the chemistry and microstructural features of products. Functional coatings must be consolidated through additional thermal steps, which necessarily entail modifications of the current production cycles of ceramic tiles. This is due to the fact that the direct functionalization of unfired ceramics is detrimental to the photocatalytic performance. The microstructure of coatings depends on deposition technologies and processing conditions. However, photoactive materials that also display superhydrophilic behaviour can be obtained by employing much lower amounts of TiO2 than 1.0 g m?2, and by annealing at temperature as low as 400–500 °C. A limited increase of the cost of products is involved, especially in the case of large-sized elements.  相似文献   
3.
4.
It is an open question whether neuronal networks, cultured on multielectrode arrays, retain any capability to usefully process information (learning and memory). A necessary prerequisite for learning is that stimulation can induce lasting changes in the network. To observe these changes, one needs a method to describe the network in sufficient detail, while stable in normal circumstances. We analyzed the spontaneous bursting activity that is encountered in dissociated cultures of rat neocortical cells. Burst profiles (BPs) were made by estimating the instantaneous array-wide firing frequency. The shape of the BPs was found to be stable on a time scale of hours. Spatiotemporal detail is provided by analyzing the instantaneous firing frequency per electrode. The resulting phase profiles (PPs) were estimated by aligning BPs to their peak spiking rate over a period of 15 min. The PPs reveal a stable spatiotemporal pattern of activity during bursts over a period of several hours, making them useful for plasticity and learning studies. We also show that PPs can be used to estimate conditional firing probabilities. Doing so, yields an approach in which network bursting behavior and functional connectivity can be studied.  相似文献   
5.
Saliva is easy to access, non-invasive and a useful source of information useful for the diagnosis of serval inflammatory and immune-mediated diseases. Following the advent of genomic technologies and -omic research, studies based on saliva testing have rapidly increased and human salivary proteome has been partially characterized. As a proteomic protocol to analyze the whole saliva proteome is not currently available, the most common aim of the proteomic analysis is to discriminate between physiological and pathological conditions. The salivary proteome has been initially investigated in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease, and Sjögren’s syndrome. Otherwise, salivary proteomics studies in the dermatological field are still in the initial phase, thus the aim of this review is to collect the best research evidence on the role of saliva proteomics analysis in immune-mediated skin diseases to understand the direction of research in this field. The results of PRISMA analysis reported herein suggest that human saliva analysis could provide significant data for the diagnosis and prognosis of several immune-mediated and inflammatory skin diseases in the next future.  相似文献   
6.
Bismuth titanate is a lead-free piezoelectric ceramic with outstanding properties that strictly depend on the composition and microstructure. However, bismuth-based materials are difficult to synthesize due to bismuth volatilisation that causes secondary phases and stoichiometry deviations. In this work, we propose a low-temperature chemical route, i.e. a modified amorphous citrate method, that allows a reduction of thermal treatment temperature, when compared with solid-state or other chemical routes, to obtain single-phase bismuth titanate samples. Single-phase powders with particle size under 300 nm are produced by calcination at 700 °C, and prepared into homogeneous dense pellets (density above 95%), with only isolated pores. The pellets show two distinctive features in the electrical behaviours directly associated with their mica-like microstructure: planar oriented boundaries are responsible for oxygen conduction, while the bulk is dominated by electronic conductivity. The samples show a high dielectric constant, around 200 at room temperature, while maintaining a low loss factor. The pellets also achieved a maximum polarisation of 5.85 μC/cm2 and an inverse piezoelectric coefficient of 7.4 pm/V. The dielectric and piezoelectric properties obtained are comparable or superior to the state-of-the-art.  相似文献   
7.
Neural Computing and Applications - Today’s metal matrix composites are widely used due to their excellent properties, which are useful for high-performance applications in the automotive and...  相似文献   
8.
The electrical contact between an embedded microelectrode and a cultured neuron depends on the geometry of the neuron-electrode interface. The contact is improved when the electrode is covered, or sealed, completely by the neuron. In this article, the finite element method is proposed as a tool for modeling the electrical properties of the neuron-electrode interface. This method permits numerical solutions of volume conductor problems for a variety of geometries, without prior restriction of the current paths. Simulations are focused on the influence of the geometry on the transfer of an extracellularly applied stimulus current to the neuron and on the sealing resistance. A comparison is also made between finite element modeling and lumped circuit modeling. In conclusion, finite element analysis is a valuable tool for studying and optimizing the neuron-electrode contact.  相似文献   
9.
High electric field strengths may induce high cell membrane potentials. At a certain breakdown level the membrane potential becomes constant due to the transition from an insulating state into a high conductivity and high permeability state. Pores are thought to be created through which molecules may be transported into and out of the cell interior. Membrane rupture may follow due to the expansion of pores or the creation of many small pores across a certain part of the membrane surface. In nonuniform electric fields, it is difficult to predict the electroporated membrane area. Therefore, in this study the induced membrane potential and the membrane area where this potential exceeds the breakdown level is investigated by finite-element modeling. Results from experiments in which the collapse of neuronal cells was detected were combined with the computed field strengths in order to investigate membrane breakdown and membrane rupture. It was found that in nonuniform fields membrane rupture is position dependent, especially at higher breakdown levels. This indicates that the size of the membrane site that is affected by electroporation determines rupture.  相似文献   
10.
Recording and stimulating neuronal activity at multiple sites can be realized with planar microelectrode arrays. Efficient use of such arrays requires each site to be covered by at least one neuron. By application of dielectrophoresis (DEP), neurons can be trapped onto these sites. This study investigates negative dielectrophoretic trapping of fetal cortical rat neurons. A planar quadrupole microelectrode structure was used for the creation of a nonuniform electric field. The field was varied in amplitude (1, 3, and 5 V) and frequency (10 kHz-50 MHz). Experimental results were compared with a theoretical model to investigate the yield (the number of neurons trapped in the center of the electrode structure) with respect to time, amplitude and frequency of the field. The yield was a function of time(1/3) according to theory. However, unlike the model predicted, an amplitude-dependent frequency behavior was present and unexpected peaks occurred in the DEP-spectra above 1 MHz. Gain/phase measurements showed a rather unpredictable behavior of the electrode plate above 1 MHz, and temperature measurement showed that heating of the medium influenced the trapping effect, especially for larger amplitudes and higher frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号