首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  国内免费   1篇
化学工业   20篇
金属工艺   7篇
能源动力   5篇
无线电   1篇
一般工业技术   16篇
冶金工业   5篇
原子能技术   3篇
自动化技术   4篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2013年   4篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
1.
Purpose : We aimed to identify novel chemotherapy responsiveness biomarkers for osteosarcoma (OS) by investigating the global protein expression profile of 12 biopsy samples from OS patients. Experimental design : Six patients were classified as good responders and six as poor responders, according to the Huvos grading system. The protein expression profiles obtained by 2‐D DIGE consisted of 2250 protein spots. Results : Among them, we identified 55 protein spots whose intensity was significantly different (Bonferroni adjusted p‐value<0.01) between the two patient groups. Mass spectrometric protein identification demonstrated that the 55 spots corresponded to 38 distinct gene products including peroxiredoxin 2 (PRDX 2). Use of a specific antibody against PRDX 2 confirmed the differential expression of PRDX 2 between good and poor responders, while PRDX 2 levels as measured by Western blotting correlated highly with their corresponding 2‐D DIGE values. The predictive value of PRDX 2 expression was further confirmed by examining an additional four OS cases using Western blotting. Conclusions and clinical relevance : These results establish PRDX 2 as a candidate for chemotherapy responsiveness marker in OS. Measuring PRDX 2 in biopsy samples before treatment may contribute to more effective management of OS.  相似文献   
2.
A new 4T2C pixel circuit formed on a silicon substrate is proposed to realize a high‐resolution 7.8‐μm pixel pitch AMOLED microdisplay. In order to achieve high luminance uniformity, the pixel circuit compensates its Vth variation of the MOSFET for the driving transistor internally by using self‐discharging method. Also presented are 0.5‐in Quad‐VGA and 1.25‐in wide Quad‐XGA microdisplays with the proposed pixel circuit.  相似文献   
3.
This article is concerned with the numerical treatment of thermal and thermal stress waves in thermoelastic solids. To keep the numerical treatment general, the development of the formulation is based on the generalized theory of thermoelasticity. A number of thermoelastic wave problems, which involve one or two space variables, are treated, in a uniform manner, by a system of first-order partial differential equations with stress, velocity, heat flow, and temperature as dependent variables. This system of equations is analyzed by the method of characteristics, yielding the characteristics and the characteristic equations. Procedures of numerical integration along the characteristics are established and carried out for several generalized and classical thermoelastic wave problems in homogeneous materials, composite materials, nonhomogeneous materials, and nonlinear elastic solids.  相似文献   
4.
5.
This article is concerned with the dynamic treatment of thermally induced stress waves in an infinite elastic plate subjected to impulsive electromagnetic radiation. The plate is assumed to be a functionally graded material (FGM), meaning that the material is composed of multiconstituents in ceramics and metals, the volume fractions of which distribute continuously inside the material. The mathematical problem is one of wave propagation in a typical nonhomogeneous material The radiation absorption is assumed to occur at a constant rate for the duration of the pulse and to diminish exponentially with distance from the surface of the plate, assuming negligible heat conduction. In treating problems, the nature of the stress-wave buildup in the plate is studied for the case of a temperature-dependent solid, that is, when material properties vary with temperature. The numerical procedure employs the characteristic method based on the integration of the governing equations along the characteristics. Numerical calculations are carried out for ceramic-metal FGM plates showing the influences of the temperature-dependent material properties and the volume fractions of the phases composing the FGM on the magnitude of the dynamic thermal stresses.  相似文献   
6.
We have proposed an illumination-collection-type scanning near-field Raman spectroscopy (SNRS) with a completely gold metal-inside-coated (MIC) pyramidal probe without an optical aperture in order to detect the Raman spectra of fine Si devices for local stress measurements. The gold MIC pyramidal probe has been studied to act as a plasmon resonance near-field optical probe with high power using a finite differential time domain (FDTD) simulation and the prototyped SNRS. In the simulation, the propagated optical power can be made available for SNRS. In the experiments, it is clear that the prototyped SNRS enhanced the Si Raman peak signal by plasmon resonance and could measure the Si Raman peak shift by line scanning the Si gate region and the Si active layer. Furthermore, compressive and tensile stresses localized around the Si gate were demonstrated by the Si Raman peak shift with a resolution of about 10 nm. It is clarified that the proposed SNRS has the possibility of detecting the Raman spectra of a local area.  相似文献   
7.
The synergistic action of antimony (Sb) with bromine (Br) was studied for polypropylene-2,3-dibromopropylpentabromophenyl ether–Sb2O3 systems at various Sb/Br molar ratios. Oxygen index, weight loss rate and heating value were used to evaluate the retardant effect. Bromine and antimony emission and their material balances were measured by gravimetric and X-ray fluorometric analysis of heated samples at each reaction time. Retarded HBr formation in the gaseous phase through SbBr3, SbOBr and Sb4O5Br2 was proved by X-ray diffraction analysis of heated residues and model products. SbBr3 and HBr formation were greatest at Sb/Br ratios of 1/3 and 1/4, respectively, while the highest oxygen index and the lowest weight loss rate and heating value were obtained at 1/4. Consequently, HBr will most probably produce the retardant effect rather than SbBr3. Effective synergistic action at the Sb/Br ratio of 1/4 is explained by presuming the formation of an acidic HBr.SbBr3 complex in the molten phase for the particular reaction pattern of bromine in 2,3-dibromopropylpentabromophenyl either.  相似文献   
8.
9.
The development of inversion domain networks consisting of basal‐plane and pyramidal‐plane inversion domain boundary (b‐IDB and p‐IDB) interfaces within grains in Sn‐Al dual‐doped ZnO (Zn0.98Sn0.01Al0.01O) polycrystalline ceramics has been confirmed using transmission electron microscopy. The atomic structure of the b‐IDB and p‐IDB interfaces has been analyzed using atomic‐resolution scanning transmission electron microscopy. The localization of Sn and Al at the respective sites of the b‐IDBs and p‐IDBs was confirmed by energy‐dispersive X‐ray spectroscopy. In contrast to Sn or Al single‐dopant addition to ZnO, which results in the formation of spinel phase precipitates without the development of inversion domain networks, Sn‐Al dual‐doping caused the suppression of spinel phase formation and the formation of monophasic inversion domain networks composed of RMO3(ZnO)n homologous phase compound members, where R and M represent dopants substituting at the b‐IDB and p‐IDB sites, with a general formula of SnAlO3(ZnO)n. The results of this study demonstrate that the formation of inversion domain networks in ZnO‐based ceramics can be stabilized via multiple‐dopant addition. This finding has potential implications for the modification of the bulk or nanoscale properties based on the choice of the specific dopants, R and M, the control of the ratio R:M and the value of n in the RMO3(ZnO)n homologous phase compound members constituting the inversion domain networks.  相似文献   
10.
The atomic and electronic structures of inversion domain boundaries in Mn‐Al dual‐doped ZnO (Zn0.89Mn0.1Al0.01O) have been investigated. Using atomic‐resolution scanning transmission electron microscopy, a head‐to‐head c‐axis configuration and cation stacking sequence of αβαβ|γ|αβαβ along the c‐axis were observed at the basal‐plane inversion domain boundary. Energy‐dispersive X‐ray spectroscopy and electron energy‐loss spectroscopy revealed significant localization of Mn and minor localization of Al at the basal‐plane inversion domain boundary. Based on experimental findings, a Mn‐doped basal‐plane inversion domain boundary slab model was constructed and refined by first principles calculations. The model is in agreement with atomic‐resolution images. The local electronic density of states of the slab model basal‐plane inversion domain boundary shows a hybridization of the Mn d and O p states within the valence band and localized Mn d states in the conduction band. The thermoelectric properties of Zn0.99?xMnxAl0.01O ceramics have been reported in a previous work. In this work, the effects of inversion domain boundaries on the thermoelectric properties are discussed. In comparison to Zn0.99?xMnxAl0.01O ceramics with x≤0.05, inversion domain boundaries in Zn0.89Mn0.1Al0.01O caused thermal and electrical conductivity reduction due to interface scattering of phonons and electrons. The Seebeck coefficient increased, suggesting electron filtering at inversion domain boundaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号