首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
  国内免费   2篇
电工技术   4篇
综合类   3篇
化学工业   20篇
金属工艺   1篇
建筑科学   4篇
矿业工程   2篇
能源动力   4篇
轻工业   6篇
石油天然气   1篇
无线电   9篇
一般工业技术   18篇
冶金工业   1篇
自动化技术   1篇
  2024年   1篇
  2023年   5篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   8篇
  2008年   2篇
  2007年   7篇
  2006年   10篇
  2005年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
排序方式: 共有74条查询结果,搜索用时 17 毫秒
1.
数控伺服系统跟踪及轮廓误差分析   总被引:1,自引:0,他引:1  
分析了数控加工中伺服系统跟踪误差和轮廓误差的计算方法,详细讨论了双轴数控加工中轴跟踪误差和轮廓误差之间的关系。指出了多轴加工中轮廓误差建模和误差控制方法的理论意义和应用价值。  相似文献   
2.
The glassy carbon electrode coated with electropolymerized methyl-red film, 1.2 × 10−6 m in thickness, (PMRE) showed high sensitivity towards Hg(II) ions. PMREs were adopted to accumulate and detect Hg(II) ions in a pH 2.56 Britton–Robinson buffer solution. Cyclic voltammogram of the accumulated Hg species on PMREs exhibited an anodic wave at 0.64 V and a cathodic wave at 0.13 V, due to the oxidation of accumulated Hg species on PMREs and the reduction of Hg(II) ions in the solution, respectively. For this heterogeneous adsorption of Hg(II) ions onto PMREs, the maximum surface concentration, adsorption equilibrium, and Gibbs energy change were evaluated to be 5.12 × 10−6 mol m−2, 3.7 × 105 l mol−1, and −30.1 kJ mol−1, respectively. The anodic peak current at 0.64 V was linear with the concentration of Hg(II) ions in the range of 1.1 × 10−10 to 1.1 × 10−7 M with a detection limit of 4.4 × 10−11 M. The proposed method was utilized successfully for the detection of Hg(II) ions in the lake water.  相似文献   
3.
研究无限大导体平面任意形状窄缝隙对雷电脉冲的时域穿透特性。文中以窄缝隙内等效面磁流为未知量建立了时域微积分方程,寻求了一种稳定有效的数值求解方法,编程计算了穿透电场时域特性,并给出了分析结论。  相似文献   
4.
Vertically aligned diamond nanowires are biofunctionalized using aminophenyl linker molecules to bond nucleic acid molecules with a well‐defined nanometer‐sized spacing to the transducer. This novel DNA biosensor combines the outstanding electrochemical properties of diamond as a transducer with the controlled bonding of DNA molecules to the tips of nanowires by use of an electrochemical attachment scheme. Nucleic acid molecules are bonded in this way and dispersed to the transducer, giving rise to optimized hybridization kinetics of DNA. Negatively charged redox mediator molecules (Fe(CN)63?/4?) are applied for DNA‐hybridization sensing. Voltammetric detection of DNA hybridization by differential pulse voltammetry is performed with respect to its sensitivity and reproducibility. On a sensor area of 0.03 cm2, a detection limit of 2.0 pM is achieved. As for the chemical stability of the DNA bonding to the diamond nanowires, no degradation over 30 hybridization/denaturation cycles could be detected. By use of this dilute DNA arrangement, single‐base mismatch discrimination is achieved. Under the same conditions, smooth diamond modified with phenyl is not suitable for amperometric DNA sensing.  相似文献   
5.
A hexafluorophosphate ionic liquid is used as a functional monomer to prepare a metal–organic framework (Zn‐MOF). Zn‐MOF is used as a template for MoS2 nanosheets synthesis and further carbonized to yield light‐responsive ZnS/C/MoS2 nanocomposites. Zn‐MOF, carbonized‐Zn‐MOF, and ZnS/C/MoS2 nanocomposites are characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X‐ray diffraction pattern, scanning electron microscopy (SEM), element mapping, Raman spectroscopy, X‐ray photoelectron spectroscopy, fluorescence, and nitrogen‐adsorption analysis. Carcinoembryonic antigen (CEA) is selected as a model to construct an immunosensing platform to evaluate the photo‐electrochemical (PEC) performances of ZnS/C/MoS2 nanocomposites. A sandwich‐type PEC immunosensor is fabricated by immobilizing CEA antibody (Ab1) onto the ZnS/C/MoS2/GCE surface, subsequently binding CEA and the alkaline phosphatase‐gold nanoparticle labeled CEA antibody (ALP‐Au‐Ab2). The catalytic conversion of vitamin C magnesium phosphate produces ascorbic acid (AA). Upon being illuminated, AA can react with photogenerated holes from ZnS/C/MoS2 nanocomposites to generate a photocurrent for quantitative assay. Under optimized experimental conditions, the PEC immunosensor exhibits excellent analytical characteristics with a linear range from 2.0 pg mL?1 to 10.0 ng mL?1 and a detection limit of 1.30 pg mL?1 (S/N = 3). The outstanding practicability of this PEC immunosensor is demonstrated by accurate assaying of CEA in clinical serum samples.  相似文献   
6.
Developing high-activity and low-cost catalysts is the key to eliminate the limitation of sluggish anodic oxygen evolution reaction (OER) during electrocatalytic overall water splitting. Herein, Ni‒Fe/black phosphorous (BP) composites are synthesized using a simple three-electrode system, where exfoliation of bulky BP and synthesis of NiFe composites are simultaneously achieved. Under light illumination, the optimized Ni‒Fe/BP composite exhibits excellent photoelectrocatalytic OER performance (e.g., the overpotential is 58 mV lower than a commercial RuO2 electrocatalyst at a current density of 10 mA·cm−2). The electron transfer on this composite is proved to follow a Ni‒BP‒Fe pathway. The electronic structure of this Ni‒Fe/BP composite is effectively regulated, leading to optimized adsorption strength of the intermediate OH* and improved intrinsic activity for the OER. Together with active sites on the support, this Ni‒Fe/BP composite possesses abundant electrochemical active sites and a bug surface area for the OER. The introduction of light further accelerates the electrocatalytic OER. This work provides a novel and facile method to synthesize high-performance metal/BP composites as well as the approaches to reveal their OER mechanisms.  相似文献   
7.
在[BMIm]BF4离子液体的修饰下,用抗坏血酸还原CuCl2 溶液制备出了铜纳米粒子。Cu2+浓度对铜纳米粒子的尺寸有着非常明显的影响。当Cu2+浓度小于2×10-2mol/L时,所制备的铜纳米粒子的直径小于10nm。还原反应的pH值和温度对铜纳米离子的尺寸没有明显影响。  相似文献   
8.
NbOx is added in Ni-Ce0.8Sm0.2O1.9 by impregnation as an anode material for solid oxide fuel cells fed with methanol. Nb (IV) and Nb (V) exist in the reduced anode. The addition of Nb reduces the binding energy of Ni. The catalytic activity of the anode and the performance of the single cell both increase with the increase of Nb. At 700 °C, the cell with 5NbOx-Ni-Ce0.8Sm0.2O1.9 anode and Ce0.8Sm0.2O1.9-carbonate electrolyte shows a output power density of 687 mW cm?2. Meanwhile, water produced in the anode is absorbed by NbOx and forms surface hydroxyl groups, which facilitates the removal of carbon. The addition of NbOx decreases the amount of deposited carbon in the humidified methanol atmosphere significantly, and an improved stability of the single cell is achieved.  相似文献   
9.
Thermodynamically favorable electrooxidation reactions of biomass derivatives integrated with hydrogen evolution reaction (HER) can simultaneously provide value-added chemicals and hydrogen, and eventually meeting the need for clean and sustainable energy development. Herein, the integration of a six-electron involved anodic half-reaction-selective electrooxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid (FDCA) on a hierarchically layered double hydroxide (CoFe@NiFe) with a cathodic HER in a two-chamber system is reported. The overall reaction reaches 38 mA cm−2 at 1.40 V and exhibits 100% selectivity to yield FDCA and a nearly 100% Faraday efficiency with hydrogen production of 901 µmol cm−2. Several operando techniques confirm that the trivalent nickel species in the CoFe@NiFe catalyst are mainly responsible for this 100%-selective oxidation reaction. This integrated overall reaction is thus a new strategy to utilize cheap catalysts and biomass derivatives to simultaneously produce value-added chemicals and sustainable energy materials, and eventually to solve current challenges of energy depletion and environmental pollution.  相似文献   
10.
Thickness of poly(malachite green) films electropolymerized on a glassy carbon electrode surface, the concentration of ascorbic acid, pH value of the solution, and accumulation time were found to affect the adsorption-controlled anodic peak current of ascorbic acid on this polymer film coated electrode. Adsorption efficiency, defined as the ratio of the active sites in polymer films to the amount of adsorbed ascorbic acid molecules, was then proposed and estimated from the comparison of mathematically simulated cyclic voltammograms with experimental ones. The concentration of ascorbic acid is the greatest parameter affected the adsorption efficiency. Poly(malachite green) film electropolymerized on the glassy carbon electrode was found to be not totally active towards oxidation of ascorbic acid when the concentration of ascorbic acid is too high or when the poly(malachite green) film is too thick. The potential shift of ascorbic acid on the modified electrodes was also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号