首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   1篇
自动化技术   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 36 毫秒
1
1.
Normal forms for underactuated mechanical systems with symmetry   总被引:2,自引:0,他引:2  
We introduce cascade normal forms for underactuated mechanical systems that are convenient for control design. These normal forms include three classes of cascade systems, namely, nonlinear systems in strict feedback form, feedforward form, and nontriangular quadratic form (to be defined). In each case, the transformation to cascade systems is provided in closed-form. We apply our results to the Acrobot, the rotating pendulum, and the cart-pole system  相似文献   
2.
Consensus and Cooperation in Networked Multi-Agent Systems   总被引:16,自引:0,他引:16  
This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations  相似文献   
3.
In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.  相似文献   
4.
Flocking for multi-agent dynamic systems: algorithms and theory   总被引:25,自引:0,他引:25  
In this paper, we present a theoretical framework for design and analysis of distributed flocking algorithms. Two cases of flocking in free-space and presence of multiple obstacles are considered. We present three flocking algorithms: two for free-flocking and one for constrained flocking. A comprehensive analysis of the first two algorithms is provided. We demonstrate the first algorithm embodies all three rules of Reynolds. This is a formal approach to extraction of interaction rules that lead to the emergence of collective behavior. We show that the first algorithm generically leads to regular fragmentation, whereas the second and third algorithms both lead to flocking. A systematic method is provided for construction of cost functions (or collective potentials) for flocking. These collective potentials penalize deviation from a class of lattice-shape objects called /spl alpha/-lattices. We use a multi-species framework for construction of collective potentials that consist of flock-members, or /spl alpha/-agents, and virtual agents associated with /spl alpha/-agents called /spl beta/- and /spl gamma/-agents. We show that migration of flocks can be performed using a peer-to-peer network of agents, i.e., "flocks need no leaders." A "universal" definition of flocking for particle systems with similarities to Lyapunov stability is given. Several simulation results are provided that demonstrate performing 2-D and 3-D flocking, split/rejoin maneuver, and squeezing maneuver for hundreds of agents using the proposed algorithms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号