首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   12篇
  国内免费   1篇
电工技术   3篇
化学工业   61篇
金属工艺   3篇
机械仪表   3篇
建筑科学   3篇
能源动力   16篇
轻工业   17篇
水利工程   1篇
无线电   8篇
一般工业技术   33篇
冶金工业   10篇
原子能技术   1篇
自动化技术   22篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   8篇
  2018年   10篇
  2017年   9篇
  2016年   7篇
  2015年   5篇
  2014年   7篇
  2013年   22篇
  2012年   12篇
  2011年   15篇
  2010年   17篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   8篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1981年   1篇
排序方式: 共有181条查询结果,搜索用时 31 毫秒
1.
Rubber‐toughened polypropylene (PP)/org‐Montmorillonite (org‐MMT) nanocomposite with polyethylene octene (POE) copolymer were compounded in a twin‐screw extruder at 230°C and injection‐molded. The POE used had 25 wt % 1‐octene content and the weight fraction of POE in the blend was varied in the range of 0–20 wt %. X‐ray diffraction analysis (XRD) revealed that an intercalation org‐MMT silicate layer structure was formed in rubber‐toughened polypropylene nanocomposites (RTPPNC). Izod impact measurements indicated that the addition of POE led to a significant improvement in the impact strength of the RTPPNC, from 6.2 kJ/m2 in untoughened PP nanocomposites to 17.8 kJ/m2 in RTPPNC containing 20 wt % POE. This shows that the POE elastomer was very effective in converting brittle PP nanocomposites into tough nanocomposites. However, the Young's modulus, tensile strength, flexural modulus, and flexural strength of the blends decreased with respect to the PP nanocomposites, as the weight fraction of POE was increased to 20 wt %. Scanning electron microscopy (SEM) was used for the investigation of the phase morphology and rubber particles size. SEM study revealed a two‐phase morphology where POE, as droplets was dispersed finely and uniformly in the PP matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3441–3450, 2006  相似文献   
2.
The contact time of particles at the walls of gas fluidized beds has been studied using a radioactive particle tracking technique to monitor the position of a radioactive tracer. The solids used were sand or FCC particles fluidized by air at room temperature and atmospheric pressure at various superficial velocities, covering both bubbling and turbulent regimes of fluidization. Based on the analysis of tracer positions, the motion of individual particles near the walls of the fluidized bed was studied. The contact time, contact distance and contact frequency of the particles at the wall were evaluated from these experimental data. It was found that in a bed of sand particles, the mean wall contact time of the fluidized bed of sand particles decreases by increasing the gas velocity in the bubbling and increases in the turbulent fluidization. In other words, the particle-wall contact time is minimum at the onset of turbulent fluidization in the bed of sand particles. However, the mean wall contact time is almost constant in both regimes of fluidization in the bed of FCC particles. All the existing models in the literature predict a decreasing contact time when the gas velocity in the bed is increased. It was also shown that the contact distance increases monotonously by increasing the gas velocity in the bed of sand particles, while it is almost constant for the bed of FCC particles. Contact frequency has a trend similar to that of the contact time for both sand and FCC particles.  相似文献   
3.
Massively parallel processors have begun using commodity operating systems that support demand-paged virtual memory. To evaluate the utility of virtual memory, we measured the behavior of seven shared-memory parallel application programs on a simulated distributed-shared-memory machine. Our results (1) confirm the importance of gang CPU scheduling, (2) show that a page-faulting processor should spin rather than invoke a parallel context switch, (3) show that our parallel programs frequently touch most of their data, and (4) indicate that memory, not just CPUs, must be gang scheduled. Overall, our experiments demonstrate that demand paging has limited value on current parallel machines because of the applications' synchronization and memory reference patterns and the machines' high page-fault and parallel context-switch overheads.An earlier version of this paper was presented at Supercomputing '94.This work is supported in part by NSF Presidential Young Investigator Award CCR-9157366; NSF Grants MIP-9225097, CCR-9100968, and CDA-9024618; Office of Naval Research Grant N00014-89-J-1222; Department of Energy Grant DE-FG02-93ER25176; and donations from Thinking Machines Corporation, Xerox Corporation, and Digital Equipment Corporation.  相似文献   
4.
Continuous flow to send images via encrypted wireless channels may reduce the efficiency of transmission. This is due to the damage or loss of the numerous macro-blocks from these images. Therefore, it is difficult to rebuild these patches from the point of reception. Many algorithms have been proposed in the past decade, particularly error concealment (EC) algorithms. In this paper, we focus on the algorithms that have high efficiency to fill-in the corrupted patches. On the other hand, we also present a new way of detecting the horizontal and vertical gradients especially, in the un-smooth patches. This improves the edge detector filter. Ultimately, a novel scheme for vertical and horizontal interpolation between the corrupted pixels and the non-corrupted adjacent pixels is achieved by improving the efficiency of filling-in. We used a new technique known as the wave-net model. This model combines the wavelet with the neural network classifier (NNC). The neural network was trained in advance to reduce the error extent for the pixels that may occur in the error. The experimental results were convincing and close to the desired. The proposed method is able to enhance image quality in term of both visual perception and the blurriness effects (BE).  相似文献   
5.
6.
In this letter, we analyze the security of an RFID authentication protocol proposed by Liu and Bailey [1], called privacy and authentication protocol (PAP). We present two traceability attacks and an impersonation attack.  相似文献   
7.
We developed a module for surgical team training using briefings in simulated crisis scenarios and here we report preliminary findings. Nine surgical teams (34 trainees) participated in a pre-training simulation, followed by an interactive workshop on briefing and checklists, and then a post-training simulation. Both technical and non-technical skills were assessed via observation during simulations by expert trainers who provided feedback on performances at the end of simulation. Trainees also reported their attitudes to briefings and evaluated the training. Pre-training attitudes to briefing were positive, some of which improved post-training and trainees’ evaluation of the training was positive. Surgeons’ technical skill improved significantly post-training, but their decision-making skill was rated lower than other non-technical skills, compared to other trainees. The training did not appear to greatly improve non-technical skill performance. Training surgical teams in simulation is feasible but much more work is needed on measurement development and training strategy to confirm its efficacy and utility.  相似文献   
8.
When subjected to microwave ageing, the microwave-induced improvement in properties is more significant for sample containing higher loading fraction of cellulose nanofiller. This is due to cellulose nanofiller has greater reactivity to microwave energy through activation of dipole–dipole interaction at the polar interface. The strengthening effects on interface were observed to magnify as a function of microwave power and irradiation time. Nevertheless, the higher montmorillonite fraction tended to inhibit such improvement effect due to the occurrence of intramolecular repulsion between montmorillonite and polysaccharides with insufficient irradiation time, facilitating the water absorption and uneven stress transfer.  相似文献   
9.
In this paper, we have presented a 2D Lagrangian two-phase numerical model to study the deformation of a droplet suspended in a quiescent fluid subjected to the combined effects of viscous, surface tension and electric field forces. The electrostatics phenomena are coupled to hydrodynamics through the solution of a set of Maxwell equations. The relevant Maxwell equations and associated interface conditions are simplified relying on the assumptions of the so-called leaky dielectric model. All governing equations and the pertinent jump and boundary conditions are discretized in space using the incompressible Smoothed Particle Hydrodynamics method with improved interface and boundary treatments. Upon imposing constant electrical potentials to upper and lower horizontal boundaries, the droplet starts acquiring either prolate or oblate shape, and shows rather different flow patterns within itself and in its vicinity depending on the ratios of the electrical permittivities and conductivities of the constituent phases. The effects of the strength of the applied electric field, permittivity, surface tension, and the initial droplet radius on the droplet deformation parameter have been investigated in detail. Numerical results are validated by two highly credential analytical results which have been frequently cited in the literature. The numerically and analytically calculated droplet deformation parameters show good agreement for small oblate and prolate deformations. However, for some higher values of the droplet deformation parameter, numerical results overestimate the droplet deformation parameter. This situation was also reported in literature and is due to the assumption made in both theories, which is that the droplet deformation is rather small, and hence the droplet remains almost circular. Moreover, the flow circulations and their corresponding velocities in the inner and outer fluids are in agreement with theories.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号