首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   25篇
  国内免费   2篇
电工技术   11篇
化学工业   89篇
金属工艺   7篇
机械仪表   5篇
建筑科学   6篇
能源动力   22篇
轻工业   25篇
水利工程   1篇
石油天然气   3篇
无线电   40篇
一般工业技术   74篇
冶金工业   5篇
原子能技术   2篇
自动化技术   39篇
  2023年   2篇
  2022年   5篇
  2021年   17篇
  2020年   15篇
  2019年   11篇
  2018年   15篇
  2017年   8篇
  2016年   14篇
  2015年   16篇
  2014年   15篇
  2013年   18篇
  2012年   20篇
  2011年   22篇
  2010年   20篇
  2009年   21篇
  2008年   21篇
  2007年   10篇
  2006年   11篇
  2005年   10篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1970年   2篇
  1965年   1篇
排序方式: 共有329条查询结果,搜索用时 22 毫秒
1.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   
2.
3.
4.
Many researchers approach the problem of programming distributed memory machines by assuming a global shared name space. Thus the user views the distributed memory of the machine as though it were shared. A major issue that arises at this point is how to manage the memory. When a processor accesses data stored on another processor's memory, data must be moved between the two processors. Once these data are retrieved from another processor's memory, several interesting issues are raised. Where should these data be stored locally? What transformations must be performed to the code to guarantee that the nonlocal accesses reference the correct memory location? What optimizations can be performed to reduce the time spent in accessing the nonlocal data? In this paper we examine various data migration mechanisms that allow an explicit and controlled mapping of data to memory. We describe, experimentally evaluate, and model a set of schemes for storing and retrieving off-processor array elements. The schemes are all based on using hash tables for efficient access of nonlocal data. The three different techniques evaluated are the basic hashed cache, partial enumeration, and full enumeration, the details of which are described in the paper. In all three schemes, nonlocal data are stored in hash tables—the difference is in the amount of memory used by the schemes and the retrieval mechanisms for nonlocal data.  相似文献   
5.
The photoconductive properties of a carotenoid polyene,β-Apo-8′ carotenal in polycrystalline form has been studied. The growth of the photocurrent shows an overshoot in the growth-time curve before steady state value is attained. This behaviour of photocurrent is proposed to be due to higher value of recombination coefficient than trapping coefficient. From the temperature dependence study it is observed that the steady state photocurrent, at first increases with increase of temperature, attains a maximum at a particular temperatureT max and then decreases with temperature. TheT max value agrees with the temperature above and below which steady state photocurrent is attained differently. Monomolecular and bimolecular recombination processes at two temperature regimes are proposed to account for the observed behaviour. The dependence of photocurrent with excitation light intensity and wavelength study provide information on the carrier generation processes. The fast decay of photocurrent have been observed at different temperatures and from this study the decay constant is calculated and it is found to be temperature independent.  相似文献   
6.
The authors report on the noise characteristics of InGaAs/InGaAsP multiple-quantum-well optical amplifiers operating near 1.5 μm. A noise figure of 4.4 dB is reported, verifying the predicted low-noise properties of quantum-well amplifiers  相似文献   
7.
Axial plasma spray is one of the thermal spray techniques to deposit multifunctional advanced coatings. The present work explores the use of this process to deposit thin, continuous, and adherent Ca5 (PO4)3OH (hydroxyapatite, HAp) coatings and characterize its microstructure, phases, hardness and adhesion strength. Three different suspension-deposited HAp coatings were investigated and compared with powder-deposited HAp coating on a Ti6Al4V substrate. The effect of mean solute particle size and solid-loading in the suspension has been explored on the evolution of microstructure, phase content and mechanical properties of axial suspension plasma sprayed (ASPS) coatings. Phase-characterization has shown retention of hydroxyapatite phase and coating crystallinity in the deposited coatings, whereas the adhesion strength of the HAp coating decreased from ~40 MPa to ~13 MPa when bioglass was added to the feedstock material. The lower solid load content and lower mean solute particle size in the suspension were found to be beneficial in achieving porous, rougher, and well-adhering coatings. This work concludes that ASPS can potentially deposit thin HAp coatings (< 50 μm) with high adhesion strength.  相似文献   
8.
9.
10.
Complete drug release and efficient drug retention are two critical factors in reversing drug resistance in cancer therapy. In this regard, polymeric micelles with an upper critical solution temperature (UCST) are designed as a new exploration to reverse drug resistance. The amphiphilic UCST‐type block copolymers are used to encapsulate photothermal agent IR780 and doxorubicin (DOX) simultaneously. The integrated UCST‐type drug nanocarriers show light‐triggered multiple synergistic effects to reverse drug resistance and are expected to kill three birds with one stone: First, owing to the photothermal effect of IR780, the nanocarriers will be dissociated upon exposure to laser irradiation, leading to complete drug release. Second, the photothermal effect‐induced hyperthermia is expected to avoid the efflux of DOX and realize efficient drug retention. Last but not least, photothermal ablation of cancer cells can be achieved after laser irradiation. Therefore, the UCST‐type drug nanocarriers provide a new strategy in reversing drug resistance in cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号