首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
化学工业   5篇
金属工艺   1篇
一般工业技术   5篇
冶金工业   1篇
自动化技术   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有14条查询结果,搜索用时 24 毫秒
1.
Market-based principles can be used to manage the risk of distributed peer-to-peer transactions. This is demonstrated by Ptrim, a system that builds a transaction default market on top of a main transaction processing system, within which peers offer to underwrite the transaction risk for a slight increase in the transaction cost. The insurance cost, determined through market-based mechanisms, is a way of identifying untrustworthy peers and perilous transactions. The risk of the transactions is contained, and at the same time members of the peer-to-peer network capitalise on their market knowledge by profiting as transaction insurers. We evaluated the approach through trials with the deployed Ptrim prototype, as well as composite experiments involving real online transaction data and real subjects participating in the transaction default market. We examine the efficacy of our approach both from a theoretical and an experimental perspective. Our findings suggest that the Ptrim market layer functions in an efficient manner, and is able to support the transaction processing system through the insurance offers it produces, thus acting as an effective means of reducing the risk of peer-to-peer transactions. In our conclusions we discuss how a system like Ptrim assimilates properties of real world markets, and its potential exposure and possible countermeasures to events such as those witnessed in the recent global financial turmoil.  相似文献   
2.
The purpose of the present study is to investigate the quasi‐static and the viscoelastic behavior of epoxy resin reinforced with starch powder. An increase in the elastic modulus on the order of 42% was achieved; a behavior that was predicted by the modulus prediction model (MPM). Next, the composite was subjected to flexural relaxation experiments, in order to determine the relaxation modulus, at different filler‐weight fractions and flexural deflections imposed. The viscoelastic models of the standard linear solid, the power law model and the residual property model (RPM) were applied in order to simulate/predict the stress relaxation curves. Predicted values derived from the application of the above models were compared to each‐other as well as to respective experimental findings. From the above comparison it was proved the superiority of the RPM model in predicting both the linear and the nonlinear viscoelastic response of the materials investigated. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41697.  相似文献   
3.
Carbon nanotubes (CNTs) consist of carbon atoms arranged in sheets of graphene rolled up into cylindrical shapes. This class of nanomaterials has attracted attention because of their extraordinary properties, such as high electrical and thermal conductivity. In addition, development in CNT functionalization chemistry has led to an enhanced dispersibility in aqueous physiological media which indeed broadens the spectrum for their potential biological applications including gene delivery. The aim of this study is to determine the capability of different cationic polymer-grafted multiwalled carbon nanotubes (MWNTs) (polymer-g-MWNTs) to efficiently complex and transfer plasmid DNA (pCMV-βGal) in vitro without promoting cytotoxicity. Carboxylated MWNT is chemically conjugated to the cationic polymers polyethylenimine (PEI), polyallylamine (PAA), or a mixture of the two polymers. In order to explore the potential of these polymer-g-MWNTs as gene delivery systems, we first study their capacity to complex plasmid DNA (pDNA) using agarose gel electrophoresis. Gel migration studies confirm pDNA binding to polymer-g-MWNT with different affinities, highest for PEI-g-MWNT and PEI/PAA-g-CNT constructs. β-galactosidase expression is assessed in human lung epithelial (A549) cells, and the cytotoxicity is determined by modified LDH assay after 24 h incubation period. Additionally, PEI-g-MWNT and/or PEI/PAA-g-MWNT reveal an improvement in gene expression when compared to the naked pDNA or to the equivalent amounts of PEI polymer alone. Mechanistically, pDNA was delivered by the polymer-g-MWNT constructs via a different pathway compared to those used by polyplexes. In conclusion, polymer-g-MWNTs may be considered in the future as a versatile tool for efficient gene transfer in cancer cells in vitro, provided their toxicological profile is established.  相似文献   
4.
5.
We have studied the correlation between the chemical composition, constitution and morphology of Al2O3 using experimental and theoretical means. Combining scanning electron microscopy, transmission electron microscopy, electron dispersive X-ray analysis and ab initio calculations, we have investigated the formation of pores. Desorption measurements show chlorine release from γ- and α-alumina films. Based on ab initio calculations, we have established that Cl can be incorporated in both γ- and α-alumina. Furthermore, two Cl atoms are likely to agglomerate since the total energy is reduced, compared to an unagglomerated configuration. We propose that Cl agglomeration is the first step towards Cl2 formation and subsequent precipitation and bubble formation. It can be learned that the Cl incorporation has to be minimized during growth of dense alumina coatings.  相似文献   
6.
The method of chemical vapor deposition (CVD) in the counter current configuration was employed in the present study for the development of composite silica membranes. The experiments were carried out in a horizontal CVD reactor under controlled temperature conditions and at various reaction times and differential pressures across the substrate sides. Tetraethylorthosilicate (TEOS) and ozone were used as deposition precursors. Two types of substrates were employed: a porous Vycor tube and an alumina (γ-Al2O3) nanofiltration (NF) tube. Measurements with a novel mercury intrusion technique showed that significant reduction of the initial pore size of the γ-Al2O3 substrates was achieved, which reached 76% in the cases of extended silica deposition. Additionally, by appropriately interpreting the Knudsen type O2 permeance results, acquired during the CVD treatment of Vycor tubes, a pore radius reduction even down to the 30% of the initial value was concluded. The permeance of Η2 and other gases (Ηe, Ν2, Αr, CO2) on the developed membranes was measured in a home-made apparatus. The separation capability of the composite membranes was determined by calculating the selectivity of hydrogen over helium, nitrogen, argon and carbon dioxide.  相似文献   
7.
Controlling the porosity, the shape, and the morphology of Kirkendall hollow nanostructures is the key factor to tune the properties of these tailor‐made nanomaterials which allow in turn broadening their applications. It is shown that by applying a continuous oxidation to copper nanowires following a temperature ramp protocol, one can synthesize cuprous oxide nanotubes containing periodic copper nanoparticles. A further oxidation of such nanoobjects allows obtaining cupric oxide nanotubes with a bamboo‐like structure. On the other hand, by applying a sequential oxidation and reduction reactions to copper nanowires, one can synthesize hollow nanoobjects with complex shapes and morphologies that cannot be obtained using the Kirkendall effect alone, such as necklace‐like cuprous oxide nanotubes, periodic solid copper nanoparticles or hollow cuprous oxide nanospheres interconnected with single crystal cuprous oxide nanorods, and aligned and periodic hollow nanospheres embedded in a cuprous oxide nanotube. The strategy demonstrated in this study opens new avenues for the engineering of hollow nanostructures with potential applications in gas sensing, catalysis, and energy storage.  相似文献   
8.

Language barriers present a major problem in the effectiveness of resource sharing and in common access to the resources of libraries. In this paper we present the TRANSLIB system, which consists of an integration of both new and existing multilingual information tools. This system takes full advantage of some AI-based methods in order to provide multilingual access to library catalogues. Its main features include functionalities for searching in multiple languages, multilingual presentation of the query results, and localization of the user interface. TRANSLIB has currently been tested in existing medium-sized bibliographic databases. Evaluation results show a remarkable improvement in the search process and report high user friendliness and easy and low-cost maintenance and upgrade of the system.  相似文献   
9.
Carbon nanotubes (CNTs) are widely used for biomedical applications as intracellular transporters of (bio)molecules, due to their high propensity to cross cell membranes. However, there is a clear discrepancy in the literature about their uptake mechanism, which should be related to the differences existing in the nanotube materials, as well as the experimental procedures. Despite the fact that there are some studies on the influence of the CNT surface chemistry, the role of the properties of non-functionalized CNTs in cellular uptake has not been much investigated to a great extent. In this work, different kinds of multi-wall CNTs (MWCNTs) are produced and fully characterized, in terms of diameter, length, metal impurity, carbon soot and surface chemistry. These MWCNT samples are tested in vitro, and the cellular uptake is indirectly evaluated by using standard fluorescent probes and confirmed by TEM images. Our assays demonstrate that nanotube length clearly influences their uptake and shorter (sub-1 μm) MWCNTs are easier to be internalized through an energy-independent pathway. The results of this investigation may be useful for the design of promising CNT-based vectors for cell therapy.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号