首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   6篇
电工技术   1篇
综合类   1篇
化学工业   25篇
金属工艺   4篇
机械仪表   3篇
建筑科学   12篇
能源动力   7篇
轻工业   13篇
石油天然气   9篇
无线电   13篇
一般工业技术   67篇
冶金工业   8篇
自动化技术   28篇
  2023年   2篇
  2022年   2篇
  2021年   7篇
  2020年   3篇
  2019年   2篇
  2018年   8篇
  2017年   6篇
  2016年   4篇
  2015年   7篇
  2014年   17篇
  2013年   18篇
  2012年   14篇
  2011年   18篇
  2010年   12篇
  2009年   8篇
  2008年   9篇
  2007年   16篇
  2006年   9篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
1.
This study compares the performances of various statistical pattern recognition techniques for the differentiation of commonly encountered features in indoor environments, possibly with different surface properties, using simple infrared (IR) sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the differentiation process. We construct feature vectors based on the parameters of angular IR intensity scans from different targets to determine their geometry and/or surface type. Mixture of normals classifier with three components correctly differentiates three types of geometries with different surface properties, resulting in the best performance (100%) in geometry differentiation. Parametric differentiation correctly identifies six different surface types of the same planar geometry, resulting in the best surface differentiation rate (100%). However, this rate is not maintained with the inclusion of more surfaces. The results indicate that the geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor in differentiation. The results demonstrate that simple IR sensors, when coupled with appropriate processing and recognition techniques, can be used to extract substantially more information than such devices are commonly employed for.  相似文献   
2.
3.
This is an extensive overview of the core and special space?Ctime and Arbitrary Lagrangian?CEulerian (ALE) techniques developed by the authors?? research teams for patient-specific cardiovascular fluid?Cstructure interaction (FSI) modeling. The core techniques are the ALE-based variational multiscale (ALE-VMS) method, the Deforming-Spatial-Domain/Stabilized Space?CTime formulation, and the stabilized space?Ctime FSI technique. The special techniques include methods for calculating an estimated zero-pressure arterial geometry, prestressing of the blood vessel wall, a special mapping technique for specifying the velocity profile at an inflow boundary with non-circular shape, techniques for using variable arterial wall thickness, mesh generation techniques for building layers of refined fluid mechanics mesh near the arterial walls, a recipe for pre-FSI computations that improve the convergence of the FSI computations, the Sequentially-Coupled Arterial FSI technique and its multiscale versions, techniques for the projection of fluid?Cstructure interface stresses, calculation of the wall shear stress and oscillatory shear index, arterial-surface extraction and boundary condition techniques, and a scaling technique for specifying a more realistic volumetric flow rate. With results from earlier computations, we show how these core and special FSI techniques work in patient-specific cardiovascular simulations.  相似文献   
4.
The computational challenges posed by fluid–structure interaction (FSI) modeling of parachutes include the lightness of the parachute canopy compared to the air masses involved in the parachute dynamics, in the case of “ringsail” parachutes the geometric complexities created by the construction of the canopy from “rings” and “sails” with hundreds of ring “gaps” and sail “slits”, and in the case of parachute clusters the contact between the parachutes. The Team for Advanced Flow Simulation and Modeling () has successfully addressed these computational challenges with the Stabilized Space–Time FSI (SSTFSI) technique, which was developed and improved over the years by the and serves as the core numerical technology, and a number of special techniques developed in conjunction with the SSTFSI technique. The quasi-direct and direct coupling techniques developed by the , which are applicable to cases with incompatible fluid and structure meshes at the interface, yield more robust algorithms for FSI computations where the structure is light and therefore more sensitive to the variations in the fluid dynamics forces. The special technique used in dealing with the geometric complexities of the rings and sails is the Homogenized Modeling of Geometric Porosity, which was developed and improved in recent years by the . The Surface-Edge-Node Contact Tracking (SENCT) technique was introduced by the as a contact algorithm where the objective is to prevent the structural surfaces from coming closer than a minimum distance in an FSI computation. The recently-introduced conservative version of the SENCT technique is more robust and is now an essential technology in the parachute cluster computations carried out by the . We provide an overview of the core and special techniques developed by the , present single-parachute FSI computations carried out for design-parameter studies, and report FSI computation and dynamical analysis of two-parachute clusters.  相似文献   
5.
Flow problems with moving boundaries and interfaces include fluid–structure interaction (FSI) and a number of other classes of problems, have an important place in engineering analysis and design, and offer some formidable computational challenges. Bringing solution and analysis to them motivated the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) method and also the variational multiscale version of the Arbitrary Lagrangian–Eulerian method (ALE-VMS). Since their inception, these two methods and their improved versions have been applied to a diverse set of challenging problems with a common core computational technology need. The classes of problems solved include free-surface and two-fluid flows, fluid–object and fluid–particle interaction, FSI, and flows with solid surfaces in fast, linear or rotational relative motion. Some of the most challenging FSI problems, including parachute FSI, wind-turbine FSI and arterial FSI, are being solved and analyzed with the DSD/SST and ALE-VMS methods as core technologies. Better accuracy and improved turbulence modeling were brought with the recently-introduced VMS version of the DSD/SST method, which is called DSD/SST-VMST (also ST-VMS). In specific classes of problems, such as parachute FSI, arterial FSI, ship hydrodynamics, fluid–object interaction, aerodynamics of flapping wings, and wind-turbine aerodynamics and FSI, the scope and accuracy of the FSI modeling were increased with the special ALE-VMS and ST FSI techniques targeting each of those classes of problems. This article provides an overview of the core ALE-VMS and ST FSI techniques, their recent versions, and the special ALE-VMS and ST FSI techniques. It also provides examples of challenging problems solved and analyzed in parachute FSI, arterial FSI, ship hydrodynamics, aerodynamics of flapping wings, wind-turbine aerodynamics, and bridge-deck aerodynamics and vortex-induced vibrations.  相似文献   
6.
7.
In general, both consciously and unconsciously perceived stimuli facilitate responses to following similar stimuli. However, masked arrows delay responses to following arrows. This inverse priming has been ascribed to inhibition of premature motor activation, more recently even to special processing of nonconsciously perceived material. Here, inverse priming depended on particular masks, was insensitive to contextual requirements for increased inhibition, and was constant across response speeds. Putative signs of motor inhibition in the electroencephalogram may as well reflect activation of the opposite response. Consequently, rather than profiting from inhibition of primed responses, the alternative response is directly primed by perceptual interactions of primes and masks. Thus there is no need to assume separate pathways for nonconscious and conscious processing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
8.
A new method is introduced to design optimal tracking controllers for a general class of nonlinear systems. A recently developed recursive approximation theory is applied to solve the nonlinear optimal tracking control problem explicitly by classical means. This reduces the nonlinear problem to a sequence of linear-quadratic and time-varying approximating problems which, under very mild conditions, globally converge in the limit to the nonlinear systems considered. The converged control input from the approximating sequence is then applied to the nonlinear system. The method is used to design an autopilot for the ESSO 190,000-dwt oil tanker. This multi-input-multi-output nonlinear super-tanker model is well established in the literature and represents a challenging problem for control design, where the design requirement is to follow a commanded maneuver at a desired speed. The performance index is selected so as to minimize: (a) the tracking error for a desired course heading, and (b) the rudder deflection angle to ensure that actuators operate within their operating limits. This will present a trade-off between accurate tracking and reduced actuator usage (fuel consumption) as they are both mutually dependent on each other. Simulations of the nonlinear super-tanker control model are conducted to illustrate the effectiveness of the nonlinear tracking controller.  相似文献   
9.
In patient-specific arterial fluid–structure interaction (FSI) computations the image-based arterial geometry comes from a configuration that is not stress-free. We present a method for estimation of element-based zero-stress (ZS) state. The method has three main components. (1) An iterative method, which starts with an initial guess for the ZS state, is used for computing the element-based ZS state such that when a given pressure load is applied, the image-based target shape is matched. (2) A method for straight-tube geometries with single and multiple layers is used for computing the element-based ZS state so that we match the given diameter and longitudinal stretch in the target configuration and the “opening angle.” (3) An element-based mapping between the arterial and straight-tube configurations is used for mapping from the arterial configuration to the straight-tube configuration, and for mapping the estimated ZS state of the straight tube back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. We present a set of test computations to show how the method works.  相似文献   
10.
We present the special arterial fluid mechanics techniques we have developed for patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. These techniques are used in conjunction with the core computational technique, which is the space?Ctime version of the variational multiscale (VMS) method and is called ??DST/SST-VMST.?? The special techniques include using NURBS for the spatial representation of the surface over which the stent mesh is built, mesh generation techniques for both the finite- and zero-thickness representations of the stent, techniques for generating refined layers of mesh near the arterial and stent surfaces, and models for representing double stent. We compute the unsteady flow patterns in the aneurysm and investigate how those patterns are influenced by the presence of single and double stents. We also compare the flow patterns obtained with the finite- and zero-thickness representations of the stent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号