首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   5篇
化学工业   38篇
金属工艺   11篇
机械仪表   11篇
建筑科学   2篇
能源动力   51篇
轻工业   7篇
石油天然气   1篇
无线电   4篇
一般工业技术   31篇
冶金工业   5篇
原子能技术   1篇
自动化技术   8篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   9篇
  2012年   12篇
  2011年   19篇
  2010年   17篇
  2009年   28篇
  2008年   11篇
  2007年   10篇
  2006年   12篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有170条查询结果,搜索用时 0 毫秒
1.
This paper proposes a large-sample approximation of the maximum-likelihood estimator for direction finding in the presence of a spatially spread source. The key idea is to replace the parametric estimate of the four-dimensional nuisance parameter vector with the approximate one that depends on just one parameter of interest, called the nominal angle, thus permitting the use of one-dimensional optimization techniques. The proposed estimator is shown to be strongly consistent and asymptotically efficient, and the Cramér–Rao bound on its standard deviation is derived. Simulations show the estimator to outperform previously proposed estimators, such as the subspace-based estimator and others based on one-dimensional search.  相似文献   
2.
Tungsten oxide (WO3) nanoplates were synthesized by a 270 W microwave-hydrothermal reaction of Na2WO4·2H2O and citric acid (C6H8O7·H2O) in deionized water. X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to reveal the synthesis of WO3 complete rectangular nanoplates in the solution of 0.2 g citric acid for 180 min, with O-W-O FTIR stretching modes at 819 and 741 cm−1, and two prominent O-W-O Raman stretching modes at 804 and 713 cm−1. The 2.71 eV indirect energy gap, and 430-460 nm blue emission wavelength range of WO3 complete rectangular nanoplates were determined using UV-visible and photoluminescence (PL) spectrometers. The formation mechanism was also proposed according to the experimental results.  相似文献   
3.
PbS crystals were hydrothermally synthesized using Pb(NO3)2, l-cysteine, and N-cetyl pyridinium chloride in solutions with different pH values at 140 °C. Flower-like, granular and truncated cubic PbS crystals composing of Pb and S were detected using an X-ray diffractometer (XRD), a scanning electron microscope (SEM), a transmission electron microscope (TEM), a selected area electron diffraction (SAED) technique and an energy dispersive X-ray (EDX) analyzer. In addition, a Raman spectrometer revealed the presence of the first and second overtone modes at 436 and 602 cm−1, respectively. Emission spectra of the products were detected at 412 nm using a photoluminescence (PL) spectrometer.  相似文献   
4.
This article reports an experimental study on the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 0.2 vol.% TiO2 nanoparticles. The heat transfer coefficient and friction factor of the TiO2–water nanofluid flowing in a horizontal double-tube counter flow heat exchanger under turbulent flow conditions are investigated. The Degussa P25 TiO2 nanoparticles of about 21 nm diameter are used in the present study. The results show that the convective heat transfer coefficient of nanofluid is slightly higher than that of the base liquid by about 6–11%. The heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate of the hot water and nanofluid, and increases with a decrease in the nanofluid temperature, and the temperature of the heating fluid has no significant effect on the heat transfer coefficient of the nanofluid. It is also seen that the Gnielinski equation failed to predict the heat transfer coefficient of the nanofluid. Finally, the use of the nanofluid has a little penalty in pressure drop.  相似文献   
5.
Cubic ZnTe nanocrystals were produced from 1:1 and 1.8:1 molar ratios of Zn:Te by a 900 W microwave plasma. The phase was detected using X-ray diffraction (XRD), which are in accordance with those of the simulations, and selected area electron diffraction (SAED). Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the products were nanocrystals with different orientations, including three longitudinal optical (LO) vibrations at 205, 410 and 620 cm? 1 and a transverse optical (TO) vibration at 166 cm? 1. Their green emissions were detected at 562 nm (2.21 eV) using luminescence spectrophotometry.  相似文献   
6.
CuS (hcp) with different morphologies was produced using a transient solid-state reaction by the direct flow of electricity through solids, containing 1:1 molar ratio of Cu:S powders, in a high vacuum system for different lengths of time. X-ray diffraction (XRD), selected area electron diffraction (SAED), and scanning and transmission electron microscopies (SEM and TEM) specified that the products were nanostructured CuS flowers, and nanostructured CuS composing of nanoparticles with different orientations, controlled by the length of time. Raman vibrations were detected at 474.5 cm− 1, and photoluminescent (PL) emissions at 347.5 nm. Both the XRD and SAED patterns are in accordance with those obtained by the corresponding simulations.  相似文献   
7.
This article presents a numerical investigation on heat transfer performance and pressure drop of nanofluids flows through a straight circular pipe in a laminar flow regime and constant heat flux boundary condition. Al2O3, CuO, carbon nanotube (CNT) and titanate nanotube (TNT) nanoparticles dispersed in water and ethylene glycol/water with particle concentrations ranging between 0 and 6 vol.% were used as working fluids for simulating the heat transfer and flow behaviours of nanofluids. The proposed model has been validated with the available experimental data and correlations. The effects of particle concentrations, particle diameter, particles Brownian motions, Reynolds number, type of the nanoparticles and base fluid on the heat transfer coefficient and pressure drop of nanofluids were determined and discussed in details. The results indicated that the particle volume concentration, Brownian motion and aspect ratio of nanoparticles similar to flow Reynolds number increase the heat transfer coefficient, while the nanoparticle diameter has an opposite effect on the heat transfer coefficient. Finally, the present study provides some considerations for the appropriate choice of the nanofluids for practical applications.  相似文献   
8.
Cubic AgBiS2 nanoparticles and flower-like clusters were successfully synthesized by microwave refluxing of CH3COOAg, Bi(NO3)3·5H2O and thiosemicarbazide (NH2NHCSNH2) in ethylene glycol. The phase was detected by X-ray diffraction (XRD) and selected area electron diffraction (SAED). The SAED pattern was also in accordance with that of the simulation. Scanning and transmission electron microscopy (SEM and TEM) revealed the gradual transformation of nanoparticles into flower-like clusters by increasing microwave power. Their UV–visible absorption and photoluminescence (PL) emission were detected by spectrometry. Possible formation mechanism of nanoparticles and nanostructured flowers was also proposed according to the experimental results.  相似文献   
9.
Three approaches for estimation of nucleation rates from induction time and metastable zone width (MSZW) were validated based on directly measured nucleation rates for paracetamol in ethanol. To quantitatively predict nucleation kinetics using Kubota's methods it is necessary to know the minimum detectable number concentration of nuclei. This was found by determination of light transmission of a series of diluted suspensions of newly nucleated crystals where the size had already been assessed by optical reflection measurement (ORM). The measured nucleation rates strongly depended on both temperature and supersaturation. The Nyvlt method predicted nucleation rates in this system reasonably well; however, it gave slightly low estimates for all temperatures. The methods of Kubota provided nucleation rates that were low by an order of magnitude.  相似文献   
10.
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号