首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  电工技术   3篇
  2017年   2篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 78 毫秒
1
1.
针对目前短期电力负荷预测方法未充分利用电力用户用电特征,以及预测精度不高等问题,提出了“分层-汇集”模型.首先,对电力用户按用电特征“分层”,得到表征不同类型电力用户用电特征的层负荷特性曲线,并将层负荷特性曲线作为构造总负荷曲线的属性因子;之后,“汇集”不同日的层负荷特性曲线,结合实时负荷训练模型;最后,进行回归预测.以某区域实际电力负荷数据为算例,基于所提出的预测方法进行负荷预测.结果显示,基于“分层-汇集”模型的短期电力负荷预测在平均百分误差(mean absolute percentage error,MAPE)、均方根误差(root-mean-square error,RMSE)以及Pearson(皮尔逊)相关系数3项评价指标上均优于一般的回归预测方法,验证了模型的有效性;在“分层”和“汇集”阶段采用不同算法组合,“分层-汇集”模型均具有较好的预测效果,验证了模型的鲁棒性.使用“分层-汇集”模型可以提高负荷预测的精度,为短期电力负荷预测提供了一种新思路.  相似文献
2.
随着智能电网、全球能源互联网的建设与相关技术的发展,现代电力系统中电力大数据的格局已经形成,如何对高维海量数据进行深度挖掘以实现数据的充分利用,成为当前电力工作者们关心的问题.该文针对电力大数据环境下高精度和实时性的负荷预测展开了研究,提出了基于Spark平台和并行随机森林回归算法(Spark platform and parallel random forest regression,SP-RFR)的短期电力负荷预测方法,通过3次弹性分布式数据集(resilient distributed datasets,RDD)转换实现单机随机森林算法的并行化改进,并在Spark分布式集群环境下实现部署.结合某区域实际电力负荷数据设计试验,进行模型训练和回归预测,通过试验证明,对同等的数据集,基于Spark平台的并行随机森林回归算法预测精度高于单机负荷预测算法;并行随机森林算法受离群数据干扰较小,且随着数据集的增大,并行随机森林算法表现出良好的鲁棒性;与单机算法在运行时间上相比,随着数据集的增大,基于分布式集群的方法优势明显.该文提出的方法能够有效地在分布式环境中进行电力负荷预测,为负荷预测提供了一种新思路.  相似文献
3.
新技术不断融入电力行业,需要学生不断学习新知识。同时,随着国家中长期发展规划的卓越计划的实施,又要求提高学生的工程素质。分析了目前高校信息类专业人才在电力知识及工程型培养所面临的问题,提出了综合性人才培养的课程体系及培养构思,阐述了这些方法的理论价值及意义。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号