首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1062篇
  免费   88篇
电工技术   7篇
化学工业   396篇
金属工艺   9篇
机械仪表   23篇
建筑科学   30篇
能源动力   29篇
轻工业   285篇
水利工程   9篇
石油天然气   6篇
无线电   32篇
一般工业技术   148篇
冶金工业   29篇
原子能技术   3篇
自动化技术   144篇
  2024年   4篇
  2023年   11篇
  2022年   18篇
  2021年   120篇
  2020年   54篇
  2019年   42篇
  2018年   43篇
  2017年   51篇
  2016年   38篇
  2015年   29篇
  2014年   53篇
  2013年   66篇
  2012年   80篇
  2011年   97篇
  2010年   64篇
  2009年   78篇
  2008年   64篇
  2007年   52篇
  2006年   39篇
  2005年   27篇
  2004年   25篇
  2003年   20篇
  2002年   20篇
  2001年   6篇
  2000年   9篇
  1999年   9篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
排序方式: 共有1150条查询结果,搜索用时 31 毫秒
1.
The impact of graphite nanoplatelets (GNPs) on the physical and mechanical properties of cementitious nanocomposites was investigated. A market-available premixed mortar was modified with 0.01% by weight of cement of commercial GNPs characterized by two distinctively different aspect ratios.The rheological behavior of the GNP-modified fresh admixtures was thoroughly evaluated. Hardened cementitious nanocomposites were investigated in terms of density, microstructure (Scanning Electron Microscopy, SEM and micro–Computed Tomography, μ-CT), mechanical properties (three-point bending and compression tests), and physical properties (electrochemical impedance spectroscopy, EIS and thermal conductivity measurements). At 28 days, all GNP-modified mortars showed about 12% increased density. Mortars reinforced with high aspect ratio GNPs exhibited the highest compressive and flexural strength: about 14% and 4% improvements compared to control sample, respectively. Conversely, low aspect ratio GNPs led to cementitious nanocomposites characterized by 36% decreased electrical resistivity combined with 60% increased thermal conductivity with respect to the control sample.  相似文献   
2.
CD22 (Siglec-2) is a B-cell surface inhibitory protein capable of selectively recognising sialylated glycans, thus dampening autoimmune responses against self-antigens. Here we have characterised the dynamic recognition of complex-type N-glycans by human CD22 by means of orthogonal approaches including NMR spectroscopy, computational methods and biophysical assays. We provide new molecular insights into the binding mode of sialoglycans in complex with h-CD22, highlighting the role of the sialic acid galactose moieties in the recognition process, elucidating the conformational behaviour of complex-type N-glycans bound to Siglec-2 and dissecting the formation of CD22 homo-oligomers on the B-cell surface. Our results could enable the development of additional therapeutics capable of modulating the activity of h-CD22 in autoimmune diseases and malignancies derived from B-cells.  相似文献   
3.
Cyanobactins are a large family of cyanobacterial ribosomally synthesized and post-translationally modified peptides (RiPPs) often associated with biological activities, such as cytotoxicity, antiviral, and antimalarial activities. They are traditionally described as cyclic molecules containing heterocyclized amino acids. However, this definition has been recently challenged by the discovery of short, linear cyanobactins containing three to five amino acids as well as cyanobactins containing no heterocyclized residues. Herein we report the discovery of scytodecamide ( 1 ) from the freshwater cyanobacterium Scytonema sp. UIC 10036. Structural elucidation based on mass spectrometry, 1D and 2D NMR spectroscopy, and Marfey's method revealed 1 to be a linear decapeptide with an N-terminal N-methylation and a C-terminal amidation. The genome of Scytonema sp. UIC 10036 was sequenced, and bioinformatic analysis revealed a cyanobactin-like biosynthetic gene cluster consistent with the structure of 1 . The discovery of 1 as a novel linear peptide containing an N-terminal N-methylation and a C-terminal amidation expands the chemical and genetic diversity of the cyanobactin family of compounds.  相似文献   
4.
Here in, we describe an ultrafast, single-step microwave irradiation route (MW) to prepare graphene supported Pt nanoparticles, during which the small Pt nanoparticles are distributed uniformly on a reduced graphene oxide surface. This route provides evident advantages namely low cost, easiness, low time consuming and high yield in comparison to actual chemical methods to develop efficient Pt/rGO catalyst with Pt content close to state-of-the-art commercial composition. The structure and composition of prepared samples have been studied by specific techniques, while the electrocatalytic stability has been studied using ex-situ and in-situ measurements. High performance and electrochemically stable catalyst for PEM fuel cells was developed using the sample with highest loading and good dispersion. The fabricated Pt-rGO-based MEA was investigated for durability under fuel starvation in comparison with commercial Pt/C-based MEA. The electrocatalytic activity was investigated and the electrochemical response revealed the higher stability during accelerated degradation test under fuel starvation in comparison with commercial Pt/C. This study promotes the applicability of described preparation method to noble or transition metal nanoparticles embedded on graphene-based materials.  相似文献   
5.
6.
7.
The nickel-base superalloy 718 is a precipitation hardened alloy widely used in the nuclear fuel assembly of pressurized water reactors (PWR). However, the alloy can experience failure due to hydrogen embrittlement (HE). The processing route can influence the microstructure of the material and, therefore, the HE degree. In particular, the size and distribution of the (Nb,Ti)C particles can be affected by the processing. In this regard, the objective of this work was to analyze the influence of cold and hot deformation processing routes on the development of the microstructure, and the consequences on mechanical properties and hydrogen embrittlement. Tensile samples were hydrogenated through gaseous charging and compared to non-hydrogenated samples. Characterization was performed via scanning and transmission electron microscopies, as well as electron backscattered diffraction. The processing was effective to promote significant variations in average grain size and length fraction of special Σ3n boundaries, as well as reduction of average (Nb,Ti)C particle size, being these changes more intense for the cold-rolled route. For the mechanical properties, on one side, the cold-rolled route presented the highest increase in ductility for non-hydrogenated samples, while, on the other side, had the highest degree of embrittlement under hydrogen. This dual behavior was attributed to the interaction of hydrogen with the (Nb,Ti)C particles and stringers and its ensuing influence on the fracture processes.  相似文献   
8.
A series of 2-phenyloxazoles bearing an amide group at position 4 were designed and synthesized for evaluation as potential inhibitors of human recombinant monoamine oxidases (hrMAOs). Results of kinetics experiments demonstrated that all compounds behave as competitive MAO inhibitors, with good selectivity toward the MAO-B isoform. The most potent and selective derivatives are characterized by inhibition constant (Ki) values in the sub-micromolar range and a good selectivity index (Ki MAO-A/Ki MAO-B>50). Some derivatives were also found to be able to inhibit MAO activity in nerve growth factor (NGF)-differentiated PC12 cells, taken as a model of neuronal cells. In particular, 2-(2-hydroxyphenyl)-N-phenyloxazole-4-carboxamide (compound 4 a ) may be a promising new scaffold, exerting the highest selectivity and inhibitory effect toward MAOs in NGF-differentiated PC12 cell lysates, without compromising cell viability. Molecular docking analysis allowed a rationalization of the experimentally observed binding affinity and selectivity.  相似文献   
9.
4-Chloro-N-(pyridin-2-ylmethyl)aniline (CPYA) was synthesized by a simple and inexpensive method and tested as a corrosion inhibitor in acid medium for mild steel by using gravimetric studies and electrochemical measurements. An average maximum efficiency of 96.0% was achieved at 4.59 mmol/L. Corrosion kinetic and thermodynamic parameters were also analyzed. Surface analyses (atomic force microscopy and scanning electron microscopy) show that protection is enabled by adsorption on the metal, forming a film. Quantum chemical calculations were performed to access information regarding the molecular structure in the corrosive medium and to support interpretation of the results obtained by experimental methods.  相似文献   
10.
The epidermal growth factor receptor (EGFR), through the MAP kinase and PI3K-Akt-mTOR axis, plays a pivotal role in colorectal cancer (CRC) pathogenesis. The membrane-associated NEU3 sialidase interacts with and desialylates EGFR by promoting its dimerization and downstream effectors’ activation. Among the targeted therapies against EGFR, the monoclonal antibody cetuximab is active only in a subgroup of patients not carrying mutations in the MAP kinase pathway. In order to better understand the EGFR-NEU3 interplay and the mechanisms of pharmacological resistance, we investigated the role of NEU3 deregulation in cetuximab-treated CRC cell lines transiently transfected with NEU3 using Western blot analysis. Our results indicate that NEU3 overexpression can enhance EGFR activation only if EGFR is overexpressed, indicating the existence of a threshold for NEU3-mediated EGFR activation. This enhancement mainly leads to the constitutive activation of the MAP kinase pathway. Consequently, we suggest that the evaluation of NEU3 expression cannot entirely substitute the evaluation of EGFR because EGFR-negative cases cannot be stimulated by NEU3. Furthermore, NEU3-mediated hyperactivation of EGFR is counterbalanced by the administration of cetuximab, hypothesizing that a combined treatment of NEU3- and EGFR-targeted therapies may represent a valid option for CRC patients, which must be investigated in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号