首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1630篇
  免费   70篇
  国内免费   6篇
电工技术   17篇
综合类   2篇
化学工业   473篇
金属工艺   81篇
机械仪表   57篇
建筑科学   67篇
矿业工程   2篇
能源动力   54篇
轻工业   194篇
水利工程   5篇
石油天然气   8篇
武器工业   1篇
无线电   94篇
一般工业技术   298篇
冶金工业   163篇
原子能技术   31篇
自动化技术   159篇
  2023年   17篇
  2022年   4篇
  2021年   72篇
  2020年   32篇
  2019年   25篇
  2018年   50篇
  2017年   41篇
  2016年   59篇
  2015年   50篇
  2014年   57篇
  2013年   96篇
  2012年   79篇
  2011年   92篇
  2010年   70篇
  2009年   87篇
  2008年   79篇
  2007年   66篇
  2006年   63篇
  2005年   60篇
  2004年   64篇
  2003年   26篇
  2002年   40篇
  2001年   21篇
  2000年   20篇
  1999年   18篇
  1998年   52篇
  1997年   34篇
  1996年   21篇
  1995年   27篇
  1994年   21篇
  1993年   21篇
  1992年   14篇
  1991年   10篇
  1990年   8篇
  1989年   10篇
  1988年   16篇
  1987年   14篇
  1986年   21篇
  1985年   17篇
  1984年   18篇
  1983年   12篇
  1982年   7篇
  1981年   12篇
  1980年   10篇
  1979年   14篇
  1978年   3篇
  1977年   6篇
  1976年   16篇
  1975年   13篇
  1964年   3篇
排序方式: 共有1706条查询结果,搜索用时 15 毫秒
1.
Physical exercise is known to influence hormonal mediators of appetite, but the effect of short-term maximal intensity exercise on plasma levels of appetite hormones and cytokines has been little studied. We investigated the effect of a 30 s Wingate Test, followed by a postprandial period, on appetite sensations, food intake, and appetite hormones. Twenty-six physically active young males rated their subjective feelings of hunger, prospective food consumption, and fatigue on visual analogue scales at baseline, after exercise was completed, and during the postprandial period. Blood samples were obtained for the measurement of nesfatin-1, ghrelin, leptin, insulin, pancreatic polypeptide (PP), human growth factor (hGH) and cytokine interleukin-6 (IL-6), irisin and plasma lactate concentrations, at 30 min before exercise, immediately (210 s) after exercise, and 30 min following a meal and at corresponding times in control sedentary males without ad libitum meal intake, respectively. Appetite perceptions and food intake were decreased in response to exercise. Plasma levels of irisin, IL-6, lactate, nesfatin-1 and ghrelin was increased after exercise and then it was returned to postprandial/control period in both groups. A significant rise in plasma insulin, hGH and PP levels after exercise was observed while meal intake potentiated this response. In conclusion, an acute short-term fatiguing exercise can transiently suppress hunger sensations and food intake in humans. We postulate that this physiological response involves exercise-induced alterations in plasma hormones and the release of myokines such as irisin and IL-6, and supports the notion of existence of the skeletal muscle–brain–gut axis. Nevertheless, the detailed relationship between acute exercise releasing myokines, appetite sensations and impairment of this axis leading to several diseases should be further examined.  相似文献   
2.
In this article the results concerned influence of processing conditions of the wire electrical discharge machining and vibro‐abrasive machining on the surface layer and morphology of samples made of hard machinable materials used in aircraft industry like: Titanium 5553 β, Inconel 617, Hastelloy X and Magnesium AZ31 have been presented. For this purpose the cubic and cylindrical samples made of hard machinable alloys have been prepared using optimal electric parameters of wire‐cut electrical discharge machining and finally they have been polished using circular vibratory finishing technology and different ceramic shaped stones.  相似文献   
3.
This study demonstrates, for the first time, the principle of nuclear transmutation of minor actinide (MA) by the accelerator-driven system (ADS) through the injection of high-energy neutrons into the subcritical core at the Kyoto University Critical Assembly. The main objective of the experiments is to confirm fission reactions of neptunium-237 (237Np) and americium-241 (241Am), and capture reactions of 237Np. Subcritical irradiation of 237Np and 241Am foils is conducted in a hard spectrum core with the use of the back-to-back fission chamber that obtains simultaneously two signals from specially installed test (237Np or 241Am) and reference (uranium-235) foils. The first nuclear transmutation of 237Np and 241Am by ADS soundly implemented by combining the subcritical core and the 100 MeV proton accelerator, and the use of a lead-bismuth target, is conclusively demonstrated through the experimental results of fission and capture reaction events.  相似文献   
4.
Shared metabolomic patterns at delivery have been suggested to underlie the mother-to-child transmission of adverse metabolic health. This study aimed to investigate whether mothers with gestational diabetes mellitus (GDM) and their offspring show similar metabolomic patterns several years postpartum. Targeted metabolomics (including 137 metabolites) was performed in plasma samples obtained during an oral glucose tolerance test from 48 mothers with GDM and their offspring at a cross-sectional study visit 8 years after delivery. Partial Pearson’s correlations between the area under the curve (AUC) of maternal and offspring metabolites were calculated, yielding so-called Gaussian graphical models. Spearman’s correlations were applied to investigate correlations of body mass index (BMI), Matsuda insulin sensitivity index (ISI-M), dietary intake, and physical activity between generations, and correlations of metabolite AUCs with lifestyle variables. This study revealed that BMI, ISI-M, and the AUC of six metabolites (carnitine, taurine, proline, SM(-OH) C14:1, creatinine, and PC ae C34:3) were significantly correlated between mothers and offspring several years postpartum. Intergenerational metabolite correlations were independent of shared BMI, ISI-M, age, sex, and all other metabolites. Furthermore, creatinine was correlated with physical activity in mothers. This study suggests that there is long-term metabolic programming in the offspring of mothers with GDM and informs us about targets that could be addressed by future intervention studies.  相似文献   
5.
Protein affinity reagents (e.g., antibodies) are often used for basic research, diagnostics, separations, and disease therapy. Although a lot of “synthetic” protein affinity reagents have been developed as a cost-effective alternative to antibodies, their low biocompatibility is a considerable problem for clinical application. Lipid nanoparticles (LNP) represent a highly biocompatible drug delivery agent. However, little has been reported that LNP itself works as a protein affinity reagent in living animals. Here, LNP is engineered for binding to and neutralizing a target toxic peptide in living animals by multifunctionalization with amino acid derivatives. Multifunctionalized LNP (MF-LNP) is prepared using amino acid derivative-conjugated lipids. Optimized MF-LNP exhibits nanomolar affinity to the target toxic peptide and inhibits toxic peptide-dependent hemolysis and cytotoxicity. In addition, MF-LNP captures and neutralizes the toxic peptide after intravenous injection in the bloodstream; in addition, MF-LNP does not release the toxic peptide in the accumulated organ. These results reveal the potential of using LNP as a highly biocompatible protein affinity reagent such as an antidote.  相似文献   
6.
To support our increasing energy demand, steel pipelines are deployed in transporting oil and natural gas resources for long distances. However, numerous steel structures experience catastrophic failures due to the evolution of hydrogen from their service environments initiated by corrosion reactions and/or cathodic protection. This process results in deleterious effect on the mechanical strength of these ferrous steel structures and their principal components. The major sources of hydrogen in offshore/subsea pipeline installations are moisture as well as molecular water reduction resulting from cathodic protection. Hydrogen induced cracking comes into effect as a synergy of hydrogen concentration and stress level on susceptible steel materials, leading to severe hydrogen embrittlement (HE) scenarios. This usually manifests in the form of induced-crack episodes, e.g., hydrogen induced cracking (HIC), stress-oriented hydrogen induced cracking (SOHIC) and sulfide stress corrosion cracking (SSCC). In this work, we have outlined sources of hydrogen attack as well as their induced failure mechanisms. Several past and recent studies supporting them have also been highlighted in line with understanding of the effect of hydrogen on pipeline steel failure. Different experimental techniques such as Devanathan–Stachurski method, thermal desorption spectrometry, hydrogen microprint technique, electrochemical impedance spectroscopy and electrochemical noise have proven to be useful in investigating hydrogen damage in pipeline steels. This has also necessitated our coverage of relatively comprehensive assessments of the effect of hydrogen on contemporary high-strength pipeline steel processed by thermomechanical controlled rolling. The effect of HE on cleavage planes and/or grain boundaries has prompted in depth crystallographic texture analysis within this work as a very important parameter influencing the corrosion behavior of pipeline steels. More information regarding microstructure and grain boundary interaction effects have been presented as well as the mechanisms of crack interaction with microstructure. Since hydrogen degradation is accompanied by other corrosion-related causes, this review also addresses key corrosion causes affecting offshore pipeline structures fabricated from steel. We have enlisted and extensively discussed several recent corrosion mitigation trials and performance tests in various media at different thermal and pressure conditions.  相似文献   
7.

The fracture behavior of carbon/epoxy composite joint structures under highly dynamic pressure loading was studied experimentally and numerically. The considered dynamic pressure loading, called hydrodynamic ram (HRAM), potentially causes fractures in structures filled with fluid. First, experiments using the HRAM simulator method were carried out to monitor the fracture behavior of the composite joint structure. In the experiment, highly dynamic pressure loading was generated which propagated and initiated the fracture of the composite joint. Next, numerical simulation was performed through finite element analysis using LS-DYNA. The dynamic pressure loading inside the fluid was predicted using the arbitrary Eulerian Lagrangian (ALE) method and the fracture behavior of the composite joint structure was simulated using cohesive zone modeling (CZM). The analysis was validated by comparing the predicted results with those from the experiment. The predicted pressure loadings were well-matched with the experimentally measured ones. The strain histories and failure strain values obtained by the analysis also agreed reasonably well compared to those in the experiment for selected points in the composite structure. Finally, the effects of impact velocity and the stiffness of the joint structure on the fracture behavior were examined.

  相似文献   
8.
Journal of Mechanical Science and Technology - Computational fluid dynamics (CFD) has become an essential tool for optimizing the design and diagnosing the operation of a boiler. However, the...  相似文献   
9.
We report a case of long‐term uneventful catheter use in a patient with previous recurrent vascular access dysfunction and infection. A single‐lumen tunneled catheter was inserted into the left internal jugular vein after a failed attempt of dual‐lumen permanent catheter placement. The follow‐up since device implantation has exceeded 5 years without any complications related to vascular access.  相似文献   
10.
RCAS1 is a protein that participates in regulation of the tumor microenvironment and its immune responses, all in order to evade the immune system. The aim of this study was to analyze RCAS1 expression in urothelial bladder cancer cells (and in fibroblasts and macrophages of the tumor stroma) and its relationship with the histological pattern of malignancy. Eighty-three postcystectomy patients were enrolled. We analyzed the histological maturity (grade), progress (pT stage), tissue invasion type (TIT), nonclassic differentiation number (NDN), and the ability to metastasize (pN). The expression of RCAS1 protein was analyzed by immunohistochemistry. Indicators of histological malignancy were observed solely in association with the RCAS1 expression in cells in the border parts (BPs) of the tumor. Histological malignancy of the tumor, indicated by the pT and pN, and metastasis-free survival time, correlated significantly with RCAS1 expression in tumor neoplastic cells, whereas malignancy determined by grade, TIT, and NDN correlated with RCAS1 expression in fibroblasts and macrophages in the tumor microenvironment. These findings suggest that the increased RCAS1 expression depends on its cellular source and that RCAS1 expression itself is a component of various signaling pathways. The immune escape occurs within the tumor BPs, where the increase in the RCAS1 expression occurs within tumor cells and stromal cells in its microenvironment. We conclude that the histological pattern of tumor malignancy, indicated by grade, TIT, NDN, pT, and pN is a morphological indicator of immune escape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号