首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   6篇
电工技术   1篇
化学工业   16篇
金属工艺   4篇
机械仪表   1篇
能源动力   2篇
轻工业   2篇
石油天然气   1篇
无线电   6篇
一般工业技术   10篇
原子能技术   1篇
自动化技术   13篇
  2023年   1篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1990年   1篇
排序方式: 共有57条查询结果,搜索用时 390 毫秒
1.
The nickel-base superalloy 718 is a precipitation hardened alloy widely used in the nuclear fuel assembly of pressurized water reactors (PWR). However, the alloy can experience failure due to hydrogen embrittlement (HE). The processing route can influence the microstructure of the material and, therefore, the HE degree. In particular, the size and distribution of the (Nb,Ti)C particles can be affected by the processing. In this regard, the objective of this work was to analyze the influence of cold and hot deformation processing routes on the development of the microstructure, and the consequences on mechanical properties and hydrogen embrittlement. Tensile samples were hydrogenated through gaseous charging and compared to non-hydrogenated samples. Characterization was performed via scanning and transmission electron microscopies, as well as electron backscattered diffraction. The processing was effective to promote significant variations in average grain size and length fraction of special Σ3n boundaries, as well as reduction of average (Nb,Ti)C particle size, being these changes more intense for the cold-rolled route. For the mechanical properties, on one side, the cold-rolled route presented the highest increase in ductility for non-hydrogenated samples, while, on the other side, had the highest degree of embrittlement under hydrogen. This dual behavior was attributed to the interaction of hydrogen with the (Nb,Ti)C particles and stringers and its ensuing influence on the fracture processes.  相似文献   
2.
The goal of this paper is to review progress (mostly recent) made in micro and nanovelocimetry, focusing on two techniques: µPIV (microparticle image velocimetry) and nanoPTV (nanoparticle tracking velocimetry). The paper focuses on the measurement of slippage (taken as a benchmark for these techniques), concentrating on work done in our group. We review the developments of µPIV that led, in the last ten years, to the achievement of 100 nm accuracy in the measurement of slip lengths. Later, this approach was complemented by nanoPTV, which recently obtained ±5 nm precision. Here, we also mention recent application of these techniques toward better characterization of microgel and polymer flows. As a whole, the two techniques have conveyed valuable information on flow behavior within and close to the boundaries of microchannels, on the importance of wetting, and on the role of surface heterogeneities. µPIV is commercially available but nanoPTV is not mature. Interesting instrumental developments are expected in the future for the latter technique.  相似文献   
3.
We report on the progress of imec's n‐type passivated emitter, rear totally diffused rear junction silicon solar cells. Selective laser doping has been introduced in the flow, allowing the implementation of a shallow diffused front surface field and a reduction of the recombination current in the contact area. Simplifications have been implemented towards a more industrial annealing sequence, by replacing expensive forming gas annealing steps with a belt furnace annealing. By applying these improvements, together with an advanced texturing process and emitter passivation by atomic layer deposition of Al2O3, 22.5% efficient cells (three busbars) have been realized on commercial 156 · 156 mm2 Czochralski‐Si. This result has been independently confirmed by ISE CalLab. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
Cokriging-based surrogate models have become popular in recent decades to approximate a computer code output from a few simulations using both coarse and more complex versions of the code. In practical applications, it is common to sequentially add new simulations to obtain more accurate approximations. We propose a method of cokriging-based sequential design, which combines both the error evaluation provided by the cokriging model and the observed errors of a leave-one-out cross-validation procedure. This method is proposed in two versions, the first one selects points one at a time. The second one allows us to parallelize the simulations and to add several design points at a time. The main advantage of the suggested strategies is that at a new design point they choose which code versions should be simulated (i.e., the complex code or one of its fast approximations). A multifidelity application is used to illustrate the efficiency of the proposed approaches. In this example, the accurate code is a two-dimensional finite element model and the less accurate one is a one-dimensional approximation of the system. This article has supplementary material online.  相似文献   
5.
This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.  相似文献   
6.
Capillary-driven self-alignment using droplets is currently extensively investigated for self-assembly and microassembly technology. In this technique, surface tension forces associated to capillary pinning create restoring forces and torques that tend to bring the moving part into the alignment. So far, most studies have addressed the problem of square chip alignment on a dedicated patch of a wafer, aiming to achieve 3D microelectronics. In this study, we investigate the shift-restoring forces for more complex moving parts such as regular—convex and non-convex—polygons and regular polygons with regular polygonal cavities. A closed-form approximate expression is derived for each of these polygonal geometries; this expression agrees with the numerical results obtained with the Surface Evolver software. For small shifts, it is found that the restoring force does not depend on the shift direction or on the polygonal shape. In order to tackle the problem of microsystem packaging, an extension of the theory is done for polygonal shapes pierced with connection vias (channels), and a closed form of the shift-restoring force is derived for these geometries and again checked against the numerical model. In this case, the restoring force depends on the shift direction. Finally, a non-dimensional number, the shift number, is proposed that indicates the isotropic or anisotropic behavior of the chip according to the shift direction.  相似文献   
7.
In this article, we describe and interpret a set of acoustic and linguistic features that characterise emotional/emotion-related user states – confined to the one database processed: four classes in a German corpus of children interacting with a pet robot. To this end, we collected a very large feature vector consisting of more than 4000 features extracted at different sites. We performed extensive feature selection (Sequential Forward Floating Search) for seven acoustic and four linguistic types of features, ending up in a small number of ‘most important’ features which we try to interpret by discussing the impact of different feature and extraction types. We establish different measures of impact and discuss the mutual influence of acoustics and linguistics.  相似文献   
8.
Liquid water transport in the diffusion porous layers of polymer electrolyte membrane fuel cells (PEMFC) is analyzed as a process of quasi-static invasion from multiple interfacial injection sources. From pore network simulations based on a new version of the invasion percolation algorithm it is shown that a porous layer acts as a two-phase filter: the number of breakthrough points is significantly lower that the number of injection points owing to the merging of liquid paths within the porous layer. The number of breakthrough points at the gas diffusion layer/gas channel interface obtained with this model is consistent with the available experimental observations.  相似文献   
9.
Improving the detection of DNA hybridization is a critical issue for several challenging applications encountered in microarray and biosensor domains. Herein, it is demonstrated that hybridization between complementary single‐stranded DNA (ssDNA) molecules loosely adsorbed on a mica surface can be achieved thanks to fine‐tuning of the composition of the hybridization buffer. Single‐molecule DNA hybridization occurs in only a few minutes upon encounters of freely diffusing complementary strands on the mica surface. Interestingly, the specific hybridization between complementary ssDNA is not altered in the presence of large amounts of nonrelated DNA. The detection of single‐molecule DNA hybridization events is performed by measuring the contour length of DNA in atomic force microscopy images. Besides the advantage provided by facilitated diffusion, which promotes hybridization between probes and targets on mica, the present approach also allows the detection of single isolated DNA duplexes and thus requires a very low amount of both probe and target molecules.  相似文献   
10.
We describe the design of a microwave oscillator using resonant tunneling diodes. The devices are fabricated from Al0.3Ga0.7As-GaAs double barrier hetero-structures grown by molecular beam epitaxy. Design criteria improving current drivability are established from a theoretical study of tunneling transmission probabilities. Very high peak current densities up to 3.104 A/cm2, favorable for high frequency operation as an oscillator, have been achieved experimentally. The devices exhibit stable oscillations at liquid nitrogen temperature and at room temperature when the tunnel diode oscillator is constructed with a stabilizing network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号