首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   27篇
  国内免费   2篇
电工技术   9篇
综合类   5篇
化学工业   48篇
金属工艺   11篇
机械仪表   11篇
建筑科学   3篇
能源动力   6篇
轻工业   10篇
水利工程   1篇
石油天然气   3篇
无线电   72篇
一般工业技术   77篇
冶金工业   31篇
原子能技术   1篇
自动化技术   34篇
  2023年   1篇
  2022年   1篇
  2021年   13篇
  2020年   9篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   11篇
  2015年   12篇
  2014年   16篇
  2013年   17篇
  2012年   8篇
  2011年   19篇
  2010年   18篇
  2009年   18篇
  2008年   18篇
  2007年   16篇
  2006年   12篇
  2005年   4篇
  2004年   9篇
  2003年   5篇
  2002年   8篇
  2001年   15篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   2篇
  1976年   3篇
  1974年   1篇
  1973年   3篇
  1967年   1篇
  1966年   1篇
排序方式: 共有322条查询结果,搜索用时 78 毫秒
1.
Sodium-ion capacitors(SICs)have received increasing interest for grid stationary energy storage application due to their affordability,high power,and energy densities.The major challenge for SICs is to overcome the kinetics imbalance between faradaic anode and nonfaradaic cathode.To boost the Na+reaction kinetics,the present work demonstrated a high-rate MnS-based anode by embedding the MnS nanocrystals into the N,S-co-doped carbon matrix(MnS@NSC).Benefiting from the fast pseudocapacitive Na+storage behavior,the resulting composite exhibits extraordinary rate capability(205.6 mAh g−1 at 10 A g−1)and outstanding cycling stability without notable degradation after 2000 cycles.A prototype SIC was demonstrated using MnS@NSC anode and N-doped porous carbon(NC)cathode;the obtained hybrid SIC device can display a high energy density of 139.8 Wh kg−1 and high power density of 11,500 W kg−1,as well as excellent cyclability with 84.5%capacitance retention after 3000 cycles.The superior electrochemical performance is contributed to downsizing of MnS and encapsulation of conductive N,S-co-doped carbon matrix,which not only promote the Na+and electrons transport,but also buffer the volume variations and maintain the structure integrity during Na+insertion/extraction,enabling its comparable fast reaction kinetics and cyclability with NC cathode.  相似文献   
2.
In the past decade, remarkable progress has been made in the domain of augmented reality/virtual reality (AR/VR). The need for realistic and immersive augmentation has propelled the development of haptics interfaces-enabled AR/VR. The haptics interfaces facilitate direct interaction and manipulation with both real and virtual objects, thus augmenting the perception and experiences of the users. The level of augmentation can be significantly improved by thermal stimulation or sensing, which facilitates a higher degree of object identification and discrimination. This review discusses the thermal technology-enabled augmented reality and summarizes the recent progress in the development of different thermal technology such as thermal haptics including thermo-resistive heater and Peltier devices, thermal sensors including resistive, pyroelectric, and thermoelectric sensors, which can be utilized to improve the realism of augmentation. The fundamental mechanism, design strategies, and the rational guidelines for the adoption of these technologies in AR/VR is explicitly discussed. The conclusion provides an outlook on the existing challenges and outlines the future roadmap for the realization of next-generation thermo-haptics enabled augmented reality.  相似文献   
3.
Carbon dioxide (CO2) is one of the commonly emitted gaseous by-products in industrial processes. While CO2 gas is the main cause to greenhouse effect, various CO2 capture technologies have been proposed and implemented to sequester the CO2 before the waste gases being released into the atmosphere. One of the mature technologies for CO2 absorption is by using amine-based solvents. In this regard, different single amine solvents or blended amine solvents have been proven for their capability to remove CO2. However, the dissolution and reaction of CO2 gas with the amine solvents turn the solution corrosive. Such phenomenon is undesired as it posts corrosion problem to the absorption column, which normally built of carbon steel material. Henceforth, understanding the behaviour of different amine-based solvents in absorbing CO2 and its subsequent impact on carbon steel corrosion is very significant. In this review article, we will outline some of the more commonly used solvents and their respective advantages and disadvantages, motivating further investigation into the corrosion tendency. Meanwhile, existing gaps in this research area are discussed for future investigation.  相似文献   
4.
5.
Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII’s kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.  相似文献   
6.
As an indicator for determining the operability window in slot coating flow, the viscocapillary model considering various configurations of upstream and downstream slot die lips was tested and compared with Navier–Stokes two-dimensional model. Bead pressure and sloped lip angle conditions for uniform coating operation demarcated from leaking and bead break-up defects were quantitatively predicted from the position of upstream meniscus from both models. By comparing the results, it is confirmed that the viscocapillary model for many kinds of sloped die lips could predict the operability window accurately. It is also found that there exists vortex or recirculation regimes inside upstream and downstream coating bead regions, depending on the angles of sloped die lips, even for the stable coating flow. The flow control by die lip structure will be usefully applied to design the strategy for the reliable and optimal coating process, including vortex-free windows.  相似文献   
7.
Conventional filter bank-based spectrum sensing methods employ uniform discrete Fourier transform filter bank (DFTFB). In this paper, we propose a multi-stage coefficient decimation filter bank (MS-CDFB) for wideband spectrum sensing in cognitive radios. From an initial fixed-coefficient modal filter, a filter bank that has multiple passbands of either uniform or different passband widths can be obtained using coefficient decimation. Design examples show that proposed MS-CDFB offers a complexity reduction of about 30% over the DFTFB while giving a superior sensing accuracy than the latter. The complexity reduction of MS-CDFB over the DFTFB is 85%, if both the spectrum sensors are designed to produce identical sensing accuracies.  相似文献   
8.
Monometallic Ni2+‐Ni3+ layered double hydroxide (LDH) is prepared using a simple oxidative intercalation process and may be further exfoliated into positively charged Ni(OH)2 unilamellar sheets. The superior capacitive behavior of the unilamellar sheets stranded in carbon nanotubes (CNTs) networks is achieved because of the complete interfacial charge storage arising from the confined Faradaic reactions at the interfacial region. 3D nanosheet/CNT composites are prepared using an in situ electrostatic assembly of positive charged sheets with CNTs bearing negative charges. The restacking of active nanosheets during electrochemical cycling is effectively prohibited. Consequently, the outstanding specific capacitance and remarkable rate capability of the nanosheet/CNT hybrid electrodes are demonstrated, making them promising candidates for high performance supercapacitors, combining high‐energy storage densities with high levels of power delivery.  相似文献   
9.
In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer‐by‐layer (LbL) self‐assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to formulate stable complexes under specific pH to prepare polyaniline (PANI)/PAA‐PEI multilayer films via LbL deposition. By introducing polymeric complexes as building blocks, [PANI/PAA‐PEI]n films grow much faster compared with [PANI/PAA]n films, which are deposited under the same condition. Unlike the compact [PANI/PAA]n films, [PANI/PAA‐PEI]n films exhibit porous structure that is beneficial to the electrochemical process and leads to improved electrochromic properties. An enhanced optical modulation of 30% is achieved with [PANI/PAA‐PEI]30 films at 630 nm compared with the lower optical modulation of 11% measured from [PANI/PAA]30 films. The switching time of [PANI/PAA‐PEI]30 films is only half of that of [PANI/PAA]30 films, which indicates a faster redox process. Utilizing polyelectrolyte complexes as building blocks is a promising approach to prepare fast growing LbL films for high performance electrochemical device applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号