首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  综合类   23篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   9篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the bearing capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope.  相似文献
2.
The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule. The stability factors of slopes were calculated using vertical slice method based on limit analysis. The potential sliding mass was divided into a series of vertical slices as well as the traditional slice technique. Equating the external work rate to the internal energy dissipation, the optimum solutions to stability factors were determined by the nonlinear programming algorithm. From the numerical results, it is found that the present solutions agree well with previous results when the nonlinear criterion reduces to the linear criterion, and the nonassociated flow rule reduces to the associated flow rule. The stability factors decrease by 39.7% with nonlinear parameter varying from 1.0 to 3.0. Dilation and nonlinearity have significant effects on the slope stability factors. Foundation item: Project (200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China; Project (200631878557) supported by West Traffic of Science and Technology of China  相似文献
3.
Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient concept was adopted for seismic bearing capacity calculations. A multi-wedge translational failure mechanism was used to obtain the seismic bearing capacity factors for different seismic coefficients and various inclined angles. Employing the associated flow rule, numerical results were compared with the published solutions. For bearing capacity factors related to cohesion and equivalent surcharge load, the maximum difference approximates 0.1%. However, the difference of bearing capacity factor related to unit weight is larger. With the two flow rules, the seismic bearing capacity factors were presented in the form of design charts for practical use. The results show that seismic bearing capacity factors related to the cohesion, the equivalent surcharge load and the unit weight increase greatly as the dilatancy angle increases, and that the nonassociated flow rule has important influences on the seismic bearing capacity.  相似文献
4.
1 INTRODUCTION Water solution mining-based mineral deposit belongs to the ancient landlocked evaporation of salt lake mineral deposits. The salty mineral products of mining area, such as verde salt, rock salt, glauberite, etc., mainly exist in the salty rock segment that is formed by the third sulphate sediment of group of new ditch. This rock segment consists of mudstone, anhydrite-included calcium Glauber’s salt rock, calcium Glauber’s salt rock of mudstone quality, verde salt and roc…  相似文献
5.
Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.  相似文献
6.
Estimation of compaction grouting pressure in strain softening soils   总被引:2,自引:2,他引:0  
A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield criterion as the initial yield function, the limited compaction grouting pressure was determined, according to the softening elastic-plastic model based on the conventional triaxial compression tests to simulate the strain softening soils. The small strain in the elastic zone and large stain in the plastic zone and the rational yield function for the strain softening phase stage, the analytical solutions to the compaction grouting pressure were presented. The results indicate reasonable agreement and show a good potential of the proposed method for rationally optimizing the design of compaction grouting operations. Foundation item: Project (200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China; Project (09JJ1008) supported by Hunan Provincial Natural Science Foundation of China  相似文献
7.
Based on strength reduction theory, the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water seepage were presented and compared with those without considering seepage. The comparisons indicate that the maximum difference does not exceed 3.7%, which proves the present method credible. The results show that stability numbers of shallow tunnels considering seepage are much less than those without considering seepage, and that the difference of stability numbers between considering seepage and without considering seepage increase with increasing the depth ratio. The stability numbers decrease with increasing permeability coefficient and groundwater depth. Seepage has significant effects on the stability numbers of shallow tunnels.  相似文献
8.
Seismic failure mechanisms were investigated for soil slopes subjected to strip load with upper bound method of limit analysis and finite difference method of numerical simulation, considering the influence of associated and nonassociated flow rules. Quasi-static representation of soil inertia effects using a seismic coefficient concept was adopted for seismic failure analysis. Numerical study was conducted to investigate the influences of dilative angle and earthquake on the seismic failure mechanisms for the loaded slope, and the failure mechanisms for different dilation angles were compared. The results show that dilation angle has influences on the seismic failure surfaces, that seismic maximum displacement vector decreases as the dilation angle increases, and that seismic maximum shear strain rate decreases as the dilation angle increases.  相似文献
9.
A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement among the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.  相似文献
10.
Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence mode...  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号